【題目】如圖,已知在菱形中, 則菱形的邊長(zhǎng)等于____________

【答案】

【解析】

BGEF,連接BD,與EF相交于點(diǎn)H,由三角函數(shù)求出BGGF的長(zhǎng)度,然后得到EG的長(zhǎng)度,由DEBF,則△DEH∽△BFH,則,設(shè)GH=x,則EH=2+x,FH=3-x,代入求出GH,再由勾股定理求出BH,得到BD的長(zhǎng)度,即可得到菱形的邊長(zhǎng).

解:作BGEF,連接BD,與EF相交于點(diǎn)H,如圖:

DEBF,

∴∠F=E,

sinF=sinE=,

BGEF,

,

BF=EF=5,

BG=4,

FG=

EG=5;

DEBF

∴△DEH∽△BFH,

,

設(shè)GH=x,則EH=2+x,FH=3-x,

解得:,

;

RtBGH中,由勾股定理,得

;

∵∠A=60°,AB=AD,

∴△ABD是等邊三角形,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱(chēng)直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a4,b5,則該矩形的面積為( 。

A.50B.40C.30D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AGBC,垂足為點(diǎn)G,點(diǎn)E為邊AC上一點(diǎn),BE=CE,點(diǎn)D為邊BC上一點(diǎn),GD=GB,連接ADBE于點(diǎn)F

1)求證:∠ABE=EAF;

2)求證:AE2=EFEC

3)若CG=2AG,AD=2AFBC=5,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是AB、AC的中點(diǎn).

1)求證:四邊形AEDF是菱形;

2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為美化小區(qū),物業(yè)公司計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)的倍,如果要獨(dú)立完成面積為區(qū)域的綠化,甲隊(duì)比乙隊(duì)少用天.

求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少?

若物業(yè)公司每天需付給甲隊(duì)的綠化費(fèi)用為萬(wàn)元,需付給乙隊(duì)的費(fèi)用為萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組

請(qǐng)結(jié)合題意填空,完成本題的解答

(1)解不等式①,得___________

(2)解不等式②,得___________

(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):

(4)原不等式組的解集為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,,

1 向右平移6個(gè)單位長(zhǎng)度至, 再將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),請(qǐng)按要求畫(huà)出圖形;

2)在的變換過(guò)程中,直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)

3可看成繞某點(diǎn)旋轉(zhuǎn)得到的, 則點(diǎn)的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市特產(chǎn)大閘蟹,2016年的銷(xiāo)售額是億元,因生態(tài)優(yōu)質(zhì)美譽(yù)度高,銷(xiāo)售額逐年增加2018年的銷(xiāo)售額達(dá)億元,若20172018年每年銷(xiāo)售額增加的百分率都相同.

1)求平均每年銷(xiāo)售額增加的百分率;

2)該市這年大閘蟹的總銷(xiāo)售額是多少億元?

查看答案和解析>>

同步練習(xí)冊(cè)答案