【題目】如圖,已知在菱形中,, 則菱形的邊長(zhǎng)等于____________
【答案】
【解析】
作BG⊥EF,連接BD,與EF相交于點(diǎn)H,由三角函數(shù)求出BG和GF的長(zhǎng)度,然后得到EG的長(zhǎng)度,由DE∥BF,則△DEH∽△BFH,則,設(shè)GH=x,則EH=2+x,FH=3-x,代入求出GH,再由勾股定理求出BH,得到BD的長(zhǎng)度,即可得到菱形的邊長(zhǎng).
解:作BG⊥EF,連接BD,與EF相交于點(diǎn)H,如圖:
∵DE∥BF,
∴∠F=∠E,
∴sin∠F=sin∠E=,
∵BG⊥EF,
∴,
∵BF=EF=5,
∴BG=4,
∴FG=,
∴EG=5;
∵DE∥BF,
∴△DEH∽△BFH,
∴,
設(shè)GH=x,則EH=2+x,FH=3-x,
∴,
解得:,
∴;
在Rt△BGH中,由勾股定理,得
,
∴;
∵∠A=60°,AB=AD,
∴△ABD是等邊三角形,
∴;
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱(chēng)直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=4,b=5,則該矩形的面積為( 。
A.50B.40C.30D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AG⊥BC,垂足為點(diǎn)G,點(diǎn)E為邊AC上一點(diǎn),BE=CE,點(diǎn)D為邊BC上一點(diǎn),GD=GB,連接AD交BE于點(diǎn)F.
(1)求證:∠ABE=∠EAF;
(2)求證:AE2=EFEC;
(3)若CG=2AG,AD=2AF,BC=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是以BC為底的等腰三角形,AD是邊BC上的高,點(diǎn)E、F分別是AB、AC的中點(diǎn).
(1)求證:四邊形AEDF是菱形;
(2)如果四邊形AEDF的周長(zhǎng)為12,兩條對(duì)角線的和等于7,求四邊形AEDF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為美化小區(qū),物業(yè)公司計(jì)劃對(duì)面積為的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)的倍,如果要獨(dú)立完成面積為區(qū)域的綠化,甲隊(duì)比乙隊(duì)少用天.
求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少?
若物業(yè)公司每天需付給甲隊(duì)的綠化費(fèi)用為萬(wàn)元,需付給乙隊(duì)的費(fèi)用為萬(wàn)元,要使這次的綠化總費(fèi)用不超過(guò)萬(wàn)元,至少應(yīng)安排甲隊(duì)工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向的B處,求此時(shí)輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組
請(qǐng)結(jié)合題意填空,完成本題的解答
(1)解不等式①,得___________;
(2)解不等式②,得___________;
(3)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(4)原不等式組的解集為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,
(1) 將向右平移6個(gè)單位長(zhǎng)度至, 再將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,請(qǐng)按要求畫(huà)出圖形;
(2)在的變換過(guò)程中,直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)
(3)可看成繞某點(diǎn)旋轉(zhuǎn)得到的, 則點(diǎn)的坐標(biāo)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市特產(chǎn)大閘蟹,2016年的銷(xiāo)售額是億元,因生態(tài)優(yōu)質(zhì)美譽(yù)度高,銷(xiāo)售額逐年增加2018年的銷(xiāo)售額達(dá)億元,若2017、2018年每年銷(xiāo)售額增加的百分率都相同.
(1)求平均每年銷(xiāo)售額增加的百分率;
(2)該市這年大閘蟹的總銷(xiāo)售額是多少億元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com