【題目】如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC。
(1)求證:BE⊥DE;
(2)H是直線CD上一動(dòng)點(diǎn)(不與D重合),HI平分∠HBD交CD于點(diǎn)I。請(qǐng)你畫出圖形,并猜想∠EBI與∠BHD的數(shù)量關(guān)系,且說(shuō)明理由。
【答案】(1)見解析;(2)當(dāng)H在點(diǎn)D的左側(cè)時(shí),∠BHD=2∠EBI;當(dāng)H在點(diǎn)D的右側(cè)時(shí),∠BHD=180°-2∠EBI;理由見解析
【解析】
(1)根據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到BE⊥DE;
(2)根據(jù)角平分線的定義可得∠ABD=2∠EBD;∠HBD=2∠DBI,然后分點(diǎn)H在點(diǎn)D的左邊和右邊兩種情況,表示出∠ABH和∠BHD,從而得解
(1)證明:過(guò)點(diǎn)E作EF∥AB
∴∠ABE=∠BEF
又∵AB∥CD
∴∠ABD+∠BDC=180°,EF∥CD,
∴∠FED=∠CDE
∵BE平分∠ABD,DE平分∠BDC,
∴∠ABE=∠ADB,∠CDE=∠BDC,
∴∠ABE+∠CDE=×180°=90°
∴∠BEF+∠FED=90°,即∠BED=90°
∴BE⊥DE
(2)①當(dāng)H在點(diǎn)D的左側(cè)時(shí),∠BHD=2∠EBI;
證明:∵AB∥CD
∴∠ABH=∠BHD;
∵BE平分∠ABD,BI平分∠HBD,
∴∠ABD=2∠EBD;∠HBD=2∠DBI;
∠ABH=∠ABD-∠HBD=2(∠EBD-∠DBI)=2∠EBI;
∴∠BHD=2∠EBI;
②當(dāng)H在點(diǎn)D的右側(cè)時(shí),∠BHD=180°-2∠EBI;
證明:∵AB∥CD
∴∠BHD=∠1;
又∵∠1+∠ABH=180°;
∴∠1+∠ABD+∠DBH=180°,
∵BE平分∠ABD,BI平分∠HBD,
∴∠ABD=2∠EBD;∠HBD=2∠DBI;
∴∠1+2∠EBD+2∠DBI=180°,
∴∠1=180°-2(∠EBD+∠DBI) =180°-2∠EBI,
即∠BHD=180°-2∠EBI。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AD與⊙O相切于點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長(zhǎng)線上一點(diǎn),且CE=CB.
(1)求證:BC為⊙O的切線;
(2)若AB=4,AD=1,求線段CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形BCDE的各邊分別平等于x軸或y軸,物體甲和物體乙分別由點(diǎn)A(2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針?lè)较蛞?/span>1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針?lè)较蛞?/span>2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后第2015次相遇地點(diǎn)的坐標(biāo)是( )
A. (2,0)B. (-1,-1)C. (-2,1)D. (-1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠BAD,∠ACD=∠ABC=90°,E、F分別為AC、CD的中點(diǎn),∠D=α,則∠BEF的度數(shù)為_____(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)E,點(diǎn)E為BD的中點(diǎn),∠BAC+∠BDC=180°,AB=CD=5,tan∠ACB=,則AD=______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】銅陵某初中根據(jù)教育部在中小學(xué)生中每天開展體育活動(dòng)一小時(shí)的通知要求,共開設(shè)了排球、籃球、體操、羽毛球四項(xiàng)體育活動(dòng)課,全校每個(gè)學(xué)生都可根據(jù)自己的愛好任選其中一項(xiàng).體育老師在所有學(xué)生報(bào)名中,隨機(jī)抽取了部分學(xué)生的報(bào)名情況進(jìn)行了統(tǒng)計(jì),并將結(jié)果整理后繪制了如圖兩幅不完整的統(tǒng)計(jì)圖
根據(jù)以上統(tǒng)計(jì)圖解答:
(1)體育老師隨機(jī)抽取了______名學(xué)生,并將條形圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,求“排球”部分所對(duì)應(yīng)的圓心角的度數(shù)并補(bǔ)全扇形統(tǒng)計(jì)圖;
(3)若學(xué)校一共有1600名學(xué)生,請(qǐng)估計(jì)該校報(bào)名參加“籃球”這一項(xiàng)目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線軸,垂足為,交線段于點(diǎn).
(1)如圖1,過(guò)點(diǎn)作,垂足為,連接.
①填空:的面積為______;②點(diǎn)為直線上一動(dòng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖2,點(diǎn)為線段延長(zhǎng)線上一點(diǎn),連接,,線段交于點(diǎn),若,請(qǐng)直接寫出點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)平行四邊形中,兩對(duì)平行于邊的直線將這個(gè)平行四邊形分為九個(gè)小平行四邊形,如果原來(lái)這個(gè)平行四邊形的面積為100cm2,而中間那個(gè)小平行四邊形(陰影部分)的面積為20平方厘米,則四邊形ABDC的面積是( )
A. 40cm2B. 60cm2C. 70cm2D. 80cm2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com