(1)操作發(fā)現(xiàn):
如圖,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關系?并證明你的結論.
(2)類比探究:
如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.
(1)猜想線段GF=GC,
證明:∵E是BC的中點,
∴BE=CE,
∵將△ABE沿AE折疊后得到△AFE,
∴BE=EF,
∴EF=EC,
∵EG=EG,∠C=∠EFG=90°,
∴△ECG≌△EFG,
∴FG=CG;
(2)(1)中的結論仍然成立.
證明:∵E是BC的中點,
∴BE=CE,
∵將△ABE沿AE折疊后得到△AFE,
∴BE=EF,∠B=∠AEF,
∴EF=EC,
∴∠EFC=∠ECF,
∵矩形ABCD改為平行四邊形,
∴∠B=∠D,
∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AEF=180°﹣∠B=180°﹣∠D,
∴∠ECD=∠EFG,
∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF,
∴FG=CG;
解析
科目:初中數(shù)學 來源: 題型:
AD |
AB |
AD |
AB |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年九年級上學期月考數(shù)學卷 題型:解答題
(1)操作發(fā)現(xiàn):
如圖1,在矩形ABCD中,E是BC的中點,將△ABE沿AE折疊后得到△AFE,點F在矩形ABCD內(nèi)部,延長AF交CD于點G.猜想線段GF與GC有何數(shù)量關系?并證明你的結論.
(2)類比探究:
如圖2,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結論是否仍然成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com