【題目】如圖,在等腰中,的平分線交于點(diǎn),過點(diǎn),分別交于點(diǎn)、,若的周長(zhǎng)為18,則的長(zhǎng)是( )

A.8B.9C.10D.12

【答案】B

【解析】

先根據(jù)角平分線的定義及平行線的性質(zhì)證明△BDO和△CEO是等腰三角形,再由等腰三角形的性質(zhì)得BD=DO,CE=EO,則△ADE的周長(zhǎng)=AB+AC,由此即可解決問題;

解:∵在△ABC中,∠BAC與∠ACB的平分線相交于點(diǎn)O,

∴∠ABO=OBC,∠ACO=BCO,

DEBC,

∴∠DOB=OBC,∠EOC=OCB,

∴∠ABO=DOB,∠ACO=EOC,

BD=OD,CE=OE,

∴△ADE的周長(zhǎng)是:AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=18,

AB=AC=9

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面方法,解答后面的問題:

(閱讀理解)我們已經(jīng)學(xué)習(xí)了利用配方法解一元二次方程,其實(shí)配方法還有其他重要應(yīng)用。

例題:已知x可取任意實(shí)數(shù),試求二次三項(xiàng)式的取值范圍。

解:

∵x取任何實(shí)數(shù),總有,∴。

因此,無論x取任何實(shí)數(shù),的值總是不小于-4的實(shí)數(shù)。

特別的,當(dāng)x=3時(shí),有最小值-4

(應(yīng)用1):已知x可取任何實(shí)數(shù),則二次三項(xiàng)式的最值情況是(

A. 有最大值-10 B. 有最小值-10 C. 有最大值-7 D. 有最小值-7

(應(yīng)用2):某品牌服裝進(jìn)貨價(jià)為每件50元,商家在銷售中發(fā)現(xiàn):當(dāng)以每件90元銷售時(shí),平均每天可售出20件,為了擴(kuò)大銷售量,增加盈利,商家決定采取適當(dāng)?shù)慕祪r(jià)措施。

(1)將市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么平均每天那就可多售出2件,要想平均每天銷售這種服裝盈利為1200元,我們?cè)O(shè)降價(jià)x元,根據(jù)題意列方程得(

A. B.

C. D.

(2)請(qǐng)利用上面(閱讀理解)提供的方法解決下面問題:

這家服裝專柜為了獲得每天的最大盈利,每件服裝需要降價(jià)多少元?每天的最大盈利又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y=(x>0)的圖象與直線y=x交于點(diǎn)M,∠AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點(diǎn)P在反比例函數(shù)y=(x>0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,∠EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把邊長(zhǎng)分別為46的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過程中,

1)如圖,當(dāng)點(diǎn)E在射線CB上時(shí),E點(diǎn)坐標(biāo)為

2)當(dāng)△CBD是等邊三角形時(shí),旋轉(zhuǎn)角a的度數(shù)是 a為銳角時(shí));

3)如圖,設(shè)EFBC交于點(diǎn)G,當(dāng)EG=CG時(shí),求點(diǎn)G的坐標(biāo);

4)如圖,當(dāng)旋轉(zhuǎn)角a=90°時(shí),請(qǐng)判斷矩形EDCF的對(duì)稱中心H是否在以C為頂點(diǎn),且經(jīng)過點(diǎn)A的拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,下列條件中不能判定直線AT是⊙O的切線的是( )

A. AB=4,AT=3,BT=5 B. B=45°AB=AT

C. B=55°,∠TAC=55° D. ATC=B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運(yùn)算.

如:T(3,1)=,T(m,﹣2)=

(1)填空:T(4,﹣1)=   (用含a,b的代數(shù)式表示);

(2)T(﹣2,0)=﹣2T(5,﹣1)=6.

①求ab的值;

②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,秋千鏈子的長(zhǎng)度為4 m,當(dāng)秋千向兩邊擺動(dòng)時(shí),兩邊的最大擺動(dòng)角度均為30°.則它擺動(dòng)至最高位置與最低位置的高度之差為(  )

A. 2 m B. (4-) m C. (4-2) m D. (4-2) m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】是一張等腰直角三角形紙板,,在這張紙板中剪出一個(gè)盡可能大的正方形稱為第次剪。辉谟嘞碌中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第次剪取(如圖);繼續(xù)操作下去;第次剪取后,余下的所有小三角形的面積之和是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)CCF平行于BAPQ于點(diǎn)F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案