【題目】如圖,正方形ABCD中,E為CD的中點(diǎn),AE的垂直平分線分別交AD,BC及AB的延長線于點(diǎn)F,G,H,連接HE,HC,OD,連接CO并延長交AD于點(diǎn)M.則下列結(jié)論中:
①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC
正確結(jié)論的個數(shù)有( 。
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
建立以B點(diǎn)位坐標(biāo)原點(diǎn)的平面直角坐標(biāo)系,分別求出相應(yīng)直線的解析式和點(diǎn)的坐標(biāo),求出各線段的距離,可得出結(jié)論.
解:如圖,
建立以B點(diǎn)為坐標(biāo)原點(diǎn)的平面直角坐標(biāo)系,設(shè)正方形邊長為2,可分別得各點(diǎn)坐標(biāo),
A(0,2),B(0,0),C(2,0),D(2,2), E為CD的中點(diǎn),可得E點(diǎn)坐標(biāo)(2,1),可得AE的直線方程,,由OF為直線AE的中垂線可得O點(diǎn)為,設(shè)直線OF的斜率為K,得,可得k=2,同時經(jīng)過點(diǎn)O(),可得OF的直線方程:
,可得OF與x軸、y軸的交點(diǎn)坐標(biāo)G(,0),H(0,),及F(,2),
同理可得:直線CO的方程為:,可得M點(diǎn)坐標(biāo)(,2),
可得:①FG=,
AO= =,
故FG=2AO,故①正確;
②:由O點(diǎn)坐標(biāo),D點(diǎn)坐標(biāo)(2,2),可得OD的方程:,
由H點(diǎn)坐標(biāo)(0,),E點(diǎn)坐標(biāo)(2,1),可得HE方程:,
由兩方程的斜率不相等,可得OD不平行于HE,
故②錯誤;
③由A(0,2),M(,2),H(0,),E(2,1),
可得:BH=,EC=1,AM=,MD=,
故=,
故③正確;
④:由O點(diǎn)坐標(biāo),E(2,1),H(0,),D(2,2),
可得:,
AH=,DE=1,有2OE2=AHDE,
故④正確;
⑤:由G(,0),O點(diǎn)坐標(biāo),H(0,),C(2,0),
可得:,
BH=,HC=,
可得:GO≠BH+HC,
故正確的有①③④,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE與△ABC的周長之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別以、為邊向外作正方形和正方形.
(1)當(dāng)時,正方形的周長________(用含的代數(shù)式表示);
(2)連接.試說明:三角形的面積等于正方形面積的一半.
(3)已知,且點(diǎn)是線段上的動點(diǎn),點(diǎn)是線段上的動點(diǎn),當(dāng)點(diǎn)和點(diǎn)在移動過程中,的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形一個頂點(diǎn)引出一條射線于對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的優(yōu)美線.
(1)如圖,在△ABC中,AD為角平分線,∠B=50°,∠C=30°,求證:AD為△ABC的優(yōu)美線;
(2)在△ABC中,∠B=46°,AD是△ABC的優(yōu)美線,且△ABD是以AB為腰的等腰三角形,求∠BAC的度數(shù);
(3)在△ABC中,AB=4,AC=2,AD是△ABC的優(yōu)美線,且△ABD是等腰三角形,直接寫出優(yōu)美線AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,BE是AC邊上的中線,點(diǎn)D在射線BC上.
發(fā)現(xiàn):如圖1,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,過點(diǎn)A作AF∥BC,交BE的延長線于點(diǎn)F,求的值為.
解決問題:如圖2,在△ABC中,∠ACB=90°,點(diǎn)D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點(diǎn)P,DC:BC=1:2.求的值.
應(yīng)用:若CD=2,AC=6,求BP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校機(jī)器人興趣小組在如圖①所示的矩形場地上開展訓(xùn)練.機(jī)器人從點(diǎn)出發(fā),在矩形邊上沿著的方向勻速移動,到達(dá)點(diǎn)時停止移動.已知機(jī)器人的速度為1個單位長度,移動至拐角處調(diào)整方向需要(即在、處拐彎時分別用時).設(shè)機(jī)器人所用時間為時,其所在位置用點(diǎn)表示,到對角線的距離(即垂線段的長)為個單位長度,其中與的函數(shù)圖象如圖②所示.
(1)求、的長;
(2)如圖②,點(diǎn)、分別在線段、上,線段平行于橫軸,、的橫坐標(biāo)分別為、,設(shè)機(jī)器人用了到達(dá)點(diǎn)處,用了到達(dá)點(diǎn)處(如圖①).若,求、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E在邊BC上,AE=BE,點(diǎn)M是AE的中點(diǎn),聯(lián)結(jié)CM,點(diǎn)G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當(dāng)點(diǎn)G和點(diǎn)M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當(dāng)點(diǎn)G和點(diǎn)M、C不重合時,求證:DG=DN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)為坐標(biāo)原點(diǎn),軸上點(diǎn)的橫坐標(biāo)為,軸上點(diǎn)的縱坐標(biāo)為,且,過中點(diǎn)作軸的平行線交于點(diǎn)
(1)求點(diǎn)的坐標(biāo);
(2)第一象限的點(diǎn)在上,點(diǎn)的橫坐標(biāo)為,的面積為(),用含的式子表示,并直接寫出相應(yīng)的的范圍;
(3)在(2)的條件下,過點(diǎn)作直線的垂線,點(diǎn)為垂足,的平分線交于點(diǎn),交軸正半軸于點(diǎn),若,求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市正在開展“食品安全城市”創(chuàng)建活動,為了解學(xué)生對食品安全知識的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為 ;
(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有800名學(xué)生,請你估計(jì)對食品安全知識“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com