如圖,三角形是由三角形ABC經(jīng)過某種變換后得到的.

(1)分別寫出點(diǎn)A與,點(diǎn)B與點(diǎn),點(diǎn)C與點(diǎn)的坐標(biāo),從中你發(fā)現(xiàn)了什么特征?(用語言描出來)

(2)根據(jù)你發(fā)現(xiàn)的特征解答下列問題:若點(diǎn)P(a+3,4-b)與點(diǎn)Q(2a,2b-3)關(guān)于原點(diǎn)對(duì)稱,求方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3a2b+3ab2+b2展開式中的系數(shù)等等.

(1)根據(jù)上面的規(guī)律,寫出(a+b)5的展開式.
(2)利用上面的規(guī)律計(jì)算:25-5×24+10×23-10×22+5×2-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AD是△ABC的中線.
(1)畫出以點(diǎn)D為對(duì)稱中心與△ABD成中心對(duì)稱的三角形.
(2)畫出以點(diǎn)B為對(duì)稱中心與(1)所作三角形成中心對(duì)稱的三角形.
(3)問題(2)所作三角形可以看作由△ABD作怎樣的變換得到的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,A、B兩點(diǎn)被池塘隔開,為測量AB兩點(diǎn)的距離,在AB外選一點(diǎn)C,連接AC和BC,并分別找出AC和BC的中點(diǎn)M、N,則MN是△ABC的中位線,根據(jù)三角形的中位線定理:三角形的中位線平行于第三邊且等于第三邊的一半,如果測得MN=20m,那么AB=2×20m=40m.
(1)小紅說:測AB距離也可以由圖2所示用三角形全等知識(shí)來解決,請(qǐng)根據(jù)題意填空:延長AC到D,使CD=
AC
AC
,延長BC到E,使CE=
BC
BC
,由全等三角形得,AB=ED;
(2)小華說:測AB距離也可以由三角形相似的知識(shí)來設(shè)計(jì)測量方法,求出AB的長;請(qǐng)根據(jù)題意在如圖3中畫出相應(yīng)的測量圖形:延長AC到H,使CH=2AC,延長BC到Q,使CQ=2BC,連接QH;若測得QH的長是400米,你能測出AB的長嗎?若能,請(qǐng)測出;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年福建省泉州市洛江區(qū)初二上學(xué)期期末數(shù)學(xué)卷 題型:選擇題

如圖1,是我國古代數(shù)學(xué)家趙爽的《勾股弦方圖》,它是由四個(gè)全等的直角三角

形與中間的小正方形拼成的一個(gè)大正方形.如果大正方形的面積是13,小正方形的

面積是1,直角三角形的短直角邊為a,較長的直角邊為b,那么(a+b)2值為  (    )

  A.    169         B. 25         C.  19         D.  13

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年河北省曙光教育集團(tuán)初三上學(xué)期中數(shù)學(xué)卷 題型:選擇題

如圖1,是我國古代數(shù)學(xué)家趙爽的《勾股弦方圖》,它是由四個(gè)全等的直角三角

形與中間的小正方形拼成的一個(gè)大正方形.如果大正方形的面積是13,小正方形的

面積是1,直角三角形的短直角邊為a,較長的直角邊為b,那么(a+b)2值為  (    )

  A.    169         B. 25         C.  19         D.  13

 

查看答案和解析>>

同步練習(xí)冊(cè)答案