如圖,在平面直角坐標系中,點O為坐標原點,直線y=數(shù)學公式x+3m交x軸于點A,交y軸于點B,線段BC為△ABC中∠ABO的角平分線,OC=3.
(1)求m的值;
(2)點A關于點O的對稱點為D.過點D作x軸的垂線DE,動點P從D出發(fā),以每秒一個單位的速度沿DE方向運動,過P作x軸的平行線分別交線段AB、BC于點M、N,設MN的長度為y(y≠0),P點的運動時間為t,當0<t<3時,求y與t之間的函數(shù)關系式;
(3)在(2)的條件下,當以P為圓心,y為半徑的⊙P上有且只有一點到直線AB的距離為數(shù)學公式時,求此時t的值.

解:(1)∵直線y=x+3m交x軸于點A,交y軸于點B,
∴A(4m,0),B(0,3m),
∴AB==5m,
過點C作CH⊥AB于H,
∴∠BOC=∠BHC=90°,
∵線段BC為△ABC中∠ABO的角平分線,
∴∠1=∠2,
在△OBC和△HBC中,
,
∴△OBC≌△HBC(AAS),
∴BO=BH=3m,OC=CH=3,
在Rt△AHC中,CH2+AH2=AC2
∴32+(2m)2=(4m-3)2,
解得:m=2;

(2)由(1)得A(8,0),B(0,6),
∴直線AB的解析式為y=-x+6,
設直線BC的解析式為y=kx+b,
,
∴解得:
∴直線BC的解析式為:y=-2x+6,
∵D(-8,0),
∴P(-8,t),
∴把y=t分別代入直線AB、BC的解析式,
∴M(8-t,t),N(3-t,t),
∴yMN=-t+5,

(3)在⊙P上任取一點,過該點作AB的平行線,若此直線與圓相交,則在圓上有兩點到直線AB的距離為;
若此直線與圓相切,則⊙P上有且只有一點到直線AB的距離為,
作FG∥AB,與⊙P切于點為I,連接PI并延長交直線AB于點K,DP與直線AB交于點Q,
∴∠QKP=90°,
把x=-8代入直線AB解析式y(tǒng)=-x+6,
得:Q(-8,12),
∴DQ=12,
在Rt△QPK中,PQ=12-t,tan∠PQA=tan∠ABO=,
∴PK=,
∵PK-PI=IK,
-(-t+5)=
解得:t=2,
當t=3時,PK=,
∴t有唯一解.
分析:(1)由直線的解析式可求出A,B兩點的坐標,利用勾股定理可求出AB的長,過點C作CH⊥AB于H,再證明△OBC≌△HBC(AAS),由全等的性質可得:BO=BH=3m,OC=CH=3,在Rt△AHC中,CH2+AH2=AC2,進而求出m的值;
(2)由(1)得A(8,0),B(0,6),所以可求出直線AB的解析式,設直線BC的解析式為y=kx+b,利用已知條件可求出直線BC的解析式,進而求出D和P點的坐標
把y=t分別代入直線AB、BC的解析式,求出M,N的坐標C從而求出y與t之間的函數(shù)關系式;
(3)在⊙P上任取一點,過該點作AB的平行線若此直線與圓相交,則在圓上有兩點到直線AB的距離為;若此直線與圓相切,則⊙P上有且只有一點到直線AB的距離為,作FG∥AB,與⊙P切于點為I,連接PI并延長交直線AB于點K,DP與直線AB交于點Q,在Rt△QPK中,PQ=12-t,tan∠PQA=tan∠ABO=,可建立求出t的值.
點評:本題考查了全等三角形的判定和性質、勾股定理的運用,用待定系數(shù)法求一次函數(shù)的解析式以及圓的切線的性質和銳角三角函數(shù)的定義,題目的綜合性強,難度大,對學生的綜合解題能力要求很高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案