(本題滿分12分)如圖,在平面直角坐標(biāo)系中,直線分別交軸,軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí)[來源:中教網(wǎng)],動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿線段AB以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)P作,垂足為H,連接,.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒.
①若△MPH與矩形AOCD重合部分的面積為1,求的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn),問是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請(qǐng)說明理由.
解:(1),.···································································· 1分
當(dāng)時(shí),,.
所以直線AB與CD交點(diǎn)的坐標(biāo)為.···················································· 2分
(2)
當(dāng)0<<時(shí),△MPH與矩形AOCD重合部分的面積即△MPH的面積.
過點(diǎn)M作,垂足為N.
由△AMN∽△ABO,得.
∴.∴.········································································ 4分
∴△MPH的面積為.
當(dāng)時(shí),.············································································· 5分
當(dāng)<≤3時(shí),設(shè)MH與CD相交于點(diǎn)E,△MPH與矩形AOCD重合部分的面積即
△PEH的面積.
過點(diǎn)M作于G,交HP的延長(zhǎng)線于點(diǎn)F.
.
.
由△HPE∽△HFM,得.
∴.∴.································································ 8分
∴△PEH的面積為.
當(dāng)時(shí),.
綜上所述,若△MPH與矩形AOCD重合部分的面積為1,為1或.·················· 9分
(3)有最小值.
連接PB,CH,則四邊形PHCB是平行四邊形.
∴. ∴.
當(dāng)點(diǎn)C,H,Q在同一直線上時(shí),的值最小.···································· 11分
∵點(diǎn)C,Q的坐標(biāo)分別為,, ∴直線CQ的解析式為,
∴點(diǎn)H的坐標(biāo)為. 因此點(diǎn)P的坐標(biāo)為.······························ 12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長(zhǎng);
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img width=28 height=43 src="http://thumb.zyjl.cn/pic1/imagenew/czsx/8/199768.png" >是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(貴州銅仁卷)數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在邊長(zhǎng)為2的正方形ABCD中,P為AB的中點(diǎn),Q為邊CD上一動(dòng)點(diǎn),設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點(diǎn)M、N,過Q作QE⊥AB于點(diǎn)E,過M作MF⊥BC于點(diǎn)F.
(1)當(dāng)t≠1時(shí),求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年上海市徐匯區(qū)中考一模數(shù)學(xué)卷 題型:解答題
(本題滿分12分)
如圖,的頂點(diǎn)A、B在二次函數(shù)的圖像上,又點(diǎn)A、B[來分別在軸和軸上,∠ABO=.
1.(1)求此二次函數(shù)的解析式;(4分)
2.
|
點(diǎn)在上述函數(shù)圖像上,當(dāng)與相似時(shí),求點(diǎn)的坐標(biāo).(8分)
查看答案和解析>>
科目:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(廣東珠海) 題型:解答題
來源:(本題滿分12分)如圖1,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn),與直線交于A、D兩點(diǎn)。
⑴直接寫出A、C兩點(diǎn)坐標(biāo)和直線AD的解析式;
⑵如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo).則點(diǎn)落在圖1中拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(廣西桂林) 題型:解答題
(本題滿分12分)
如圖,直角梯形ABCD中,AB∥DC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長(zhǎng);
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012062023192556339203/SYS201206202322040008469979_ST.files/image007.png">是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com