如圖,網(wǎng)格中每個(gè)小正方形的邊長為1cm,△DEF由△ABC平移得到,則平移距離是________cm.

5
分析:根據(jù)平移的性質(zhì),結(jié)合圖形可直接求解.
解答:解:根據(jù)圖形可得:線段BE的長度即是平移的距離,如下圖所示:
又BO=4cm,OE=3cm,
∴BE=5cm.
故答案為:5.
點(diǎn)評:本題考查平移的基本性質(zhì),注意掌握,①平移不改變圖形的形狀和大;②經(jīng)過平移,對應(yīng)點(diǎn)所連的線段平行且相等,對應(yīng)線段平行且相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①從原點(diǎn)O到(6,1)的“出租車距離”為
7
7
.最短路線有
7
7
條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有
120
120
個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有
780
780
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在18×13的網(wǎng)格中每個(gè)小正方形的邊長都是1.△ABC與△A′B′精英家教網(wǎng)C′是關(guān)于點(diǎn)O為位似中心的位似圖形,他們的頂點(diǎn)都在小正形的頂點(diǎn)上.
(1)在圖中畫出位似圖形點(diǎn)O;(要保留畫圖痕跡)
(2)△ABC與△A′B′C′的位似比是
 
;
(3)請?jiān)诖司W(wǎng)格中,以點(diǎn)C為位似中心,再畫一個(gè)△A1B1C,使它與△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在18×13的網(wǎng)格中每個(gè)小正方形的邊長都是1.△ABC與△A′B′C′是關(guān)于點(diǎn)O為位似中心的位似圖形,他們的頂點(diǎn)都在小正形的頂點(diǎn)上.
(1)在圖中畫出位似圖形點(diǎn)O;(要保留畫圖痕跡)
(2)△ABC與△A′B′C′的位似比是______;
(3)請?jiān)诖司W(wǎng)格中,以點(diǎn)C為位似中心,再畫一個(gè)△A1B1C,使它與△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①從原點(diǎn)O到(6,1)的“出租車距離”為______.最短路線有______條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有______個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年安徽省合肥市一中高一自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①從原點(diǎn)O到(6,1)的“出租車距離”為______.最短路線有______條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有______個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

同步練習(xí)冊答案