(2012•臺(tái)州)如圖,將正方形ABCD沿BE對(duì)折,使點(diǎn)A落在對(duì)角線(xiàn)BD上的A′處,連接A′C,則∠BA′C=
67.5
67.5
度.
分析:由四邊形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折疊的性質(zhì)可得:A′B=AB,根據(jù)等邊對(duì)等角與三角形內(nèi)角和定理,即可求得∠BA′C的度數(shù).
解答:解:∵四邊形ABCD是正方形,
∴AB=BC,∠CBD=45°,
根據(jù)折疊的性質(zhì)可得:A′B=AB,
∴A′B=BC,
∴∠BA′C=∠BCA′=
180°-∠CBD
2
=
180°-45°
2
=67.5°.
故答案為:67.5.
點(diǎn)評(píng):此題考查了折疊的性質(zhì)與正方形的性質(zhì).此題難度不大,注意掌握折疊前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州)如圖,為測(cè)量江兩岸碼頭B、D之間的距離,從山坡上高度為50米的A處測(cè)得碼頭B的仰角∠EAB為15°,碼頭D的仰角∠EAD為45°,點(diǎn)C在線(xiàn)段BD的延長(zhǎng)線(xiàn)上,AC⊥BC,垂足為C,求碼頭B、D的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州)如圖,點(diǎn)D、E、F分別為△ABC三邊的中點(diǎn),若△DEF的周長(zhǎng)為10,則△ABC的周長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州)如圖,菱形ABCD中,AB=2,∠A=120°,點(diǎn)P,Q,K分別為線(xiàn)段BC,CD,BD上的任意一點(diǎn),則PK+QK的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州)如圖,正比例函數(shù)y=kx(x≥0)與反比例函數(shù)y=
mx
(x>0)
的圖象交于點(diǎn)A(2,3),
(1)求k,m的值;
(2)寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案