分析 (1)證得△BPO∽△PCA,可得出關(guān)于OB、OP、PA、AC的比例關(guān)系式,由此可得出關(guān)于x,y的函數(shù)關(guān)系式.(要注意P點(diǎn)的橫坐標(biāo)和C點(diǎn)的縱坐標(biāo)都是負(fù)數(shù)).
(2)根據(jù)(1)得出的函數(shù)解析式即可得出x的最大整數(shù)值,代入拋物線的解析式中即可求出C點(diǎn)的坐標(biāo),然后根據(jù)B、C的坐標(biāo),求出直線BC的解析式,即可求出直線BC與x軸交點(diǎn)Q的坐標(biāo).
解答 解:(1)∵PC⊥PB,BO⊥PO
∴∠CPA+∠OPB=90°,∠PBO+∠OPB=90°
∴∠CPA=∠PBO
∵A(2,0),C(2,y)在直線x=3上
∴∠BOP=∠PAC=90°
∴△BOP∽△PAC
∴$\frac{PO}{AC}$=$\frac{BO}{PA}$,
∴$\frac{|x|}{|y|}$=$\frac{2}{3+|x|}$,
∵x<0,y<0,
∴$\frac{x}{y}$=$\frac{2}{3-x}$
∴y=-$\frac{1}{2}$x2+$\frac{3}{2}$x.
(2)當(dāng)x=-1時(shí),y=-2,
∴C點(diǎn)的坐標(biāo)為(3,-2);
設(shè)直線BC的解析式為y=kx+2,將C點(diǎn)坐標(biāo)代入后可得:
3k+2=-2,k=-$\frac{4}{3}$,
因此直線BC的解析式為y=-$\frac{4}{3}$x+2.
當(dāng)y=0時(shí),0=-$\frac{4}{3}$x+2,x=$\frac{3}{2}$.
因此Q點(diǎn)的坐標(biāo)為($\frac{3}{2}$,0).
點(diǎn)評(píng) 本題考查了三角形相似的判定和性質(zhì)、待定系數(shù)法求一次函數(shù)的解析式,一次計(jì)算圖象上點(diǎn)的坐標(biāo)特征等.考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com