【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米。某天該深潛器在海面下1800米處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.
(1)沉船C是否在“蛟龍”號深潛極限范圍內?并說明理由;
(2)由于海流原因,“蛟龍”號需在B點處馬上上浮,若平均垂直上浮速度為2000米/時,求“蛟龍”號上浮回到海面的時間.(參考數據:≈1.414,≈1.732)
【答案】(1)沉船C在“蛟龍”號深潛極限范圍內,理由見解析;(2)0.9小時.
【解析】
試題(1)過點C作CD垂直AB延長線于點D,構造Rt△ACD和Rt△BCD,設CD為x米,在Rt△ACD和Rt△BCD中,分別表示出AD和BD的長度,然后根據AB=2000米,求出x的值,求出點C距離海面的距離,判斷是否在極限范圍內.
(2)根據時間=路程÷速度,求出時間即可.
試題解析:解:(1)如答圖,過點C作CD垂直AB延長線于點D,
設CD=x米,
在Rt△ACD中,∵∠DAC=45°,∴AD=x.
在Rt△BCD中,∵∠CBD=60°,∴BD=.
∵AB=2000,∴,解得:x≈4732.
∴船C距離海平面為4732+1800=6532米<7062.68米,
∴沉船C在“蛟龍”號深潛極限范圍內.
(2)t=1800÷2000=0.9(小時).
∴“蛟龍”號從B處上浮回到海面的時間為0.9小時.
科目:初中數學 來源: 題型:
【題目】(題文)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統(tǒng)計圖和頻數直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數占總參賽人數的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎,并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,分別表示甲步行與乙騎自行車(在同一條路上)行走的路程、與時間的關系,觀察圖象并回答下列問題:
(1)乙出發(fā)時,乙與甲相距 千米;
(2)走了一段路程后,乙有事耽擱,停下來時間為 小時;
(3)甲從出發(fā)起,經過 小時與乙相遇;
(4)甲行走的平均速度是多少千米小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利用如圖1的二維碼可以進行身份識別,某校建立了一個身份識別系繞,圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數字從左到右依次記為a,b,c,d,那么可以轉換為該生所在班級序號,其序號為a×23+b×22+c×21+d×20,如圖2第一行數字從左到右依次為0,1,0,1,序號為0×23+1×22+0×21+1×20=5,表示該生為5班學生,那么表示7班學生的識別圖案是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°.
(1)若∠A=30°,b=,求∠B和a,c;
(2)若a=4,b=5,求c(精確到0.1)和∠A,∠B(精確到1°).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關注和重點發(fā)展的新興產業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同(即點D,F(xiàn)到地面的垂直距離相同),均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,觀察數軸,請回答:
(1)點C與點D的距離為______ ,點B與點D的距離為______ ;
(2)點B與點E的距離為______ ,點A與點C的距離為______ ;
發(fā)現(xiàn):在數軸上,如果點M與點N分別表示數m,n,則他們之間的距離可表示為 ______(用m,n表示)
(3)利用發(fā)現(xiàn)的結論解決下列問題: 數軸上表示x的點P與B之間的距離是1,則 x 的值是______ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明在一個半圓形的花園的周邊散步,如圖1,小明從圓心O出發(fā),按圖中箭頭所示的方向,依次勻速走完下列三條線路:(1)線段OA;(2)半圓弧AB;(3)線段BO后,回到出發(fā)點.小明離出發(fā)點的距離S(小明所在位置與O點之間線段的長度)與時間t之間的圖象如圖2所示,請據圖回答下列問題(圓周率π的值取3):
(1)請直接寫出:花園的半徑是 米,小明的速度是 米/分,a= ;
(2)若沿途只有一處小明遇到了一位同學停下來交談了2分鐘,并且小明在遇到同學的前后,始終保持速度不變,請你求出:
①小明遇到同學的地方離出發(fā)點的距離;
②小明返回起點O的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知平行四邊形ABCD,BC∥x軸,BC=6,點A的坐標為(1,4),點B的坐標為(﹣3,﹣4),點C在第四象限,點P是平行四邊形ABCD邊上的一個動點.
(1)若點P在邊CD上,BC=CP,求點P的坐標;
(2)如圖2,若點P在邊AB,AD上,點P關于坐標軸對稱的點Q落在直線y=﹣x+1上,求點P的坐標;
(3)若點P在邊AB,AD,BC上,點E是AB與y軸的交點,如圖3,過點P作y軸的平行線PF,過點E作x軸的平行線E,它們相交于點F,將△PEF沿直線PE翻折,當點F的對應點落在坐標軸上時,求點P的坐標.(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com