分析 根據(jù)圖象結(jié)合二次函數(shù)的性質(zhì)即可求解.
解答 解:由圖象可知,二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸為直線x=1;
開口向下;
與x軸交于點(diǎn)(-1,0),(3,0);
當(dāng)x<1時,y隨x的增大而增大;x>1時,y隨x的增大而減。
故答案為:對稱軸為直線x=1(答案不唯一).
點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-$\frac{2a}$,$\frac{4ac-^{2}}{4a}$),對稱軸是直線x=-$\frac{2a}$,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,x<-$\frac{2a}$時,y隨x的增大而減;x>-$\frac{2a}$時,y隨x的增大而增大;x=-$\frac{2a}$時,y取得最小值$\frac{4ac-^{2}}{4a}$,即頂點(diǎn)是拋物線的最低點(diǎn).②當(dāng)a<0時,拋物線y=ax2+bx+c(a≠0)的開口向下,x<-$\frac{2a}$時,y隨x的增大而增大;x>-$\frac{2a}$時,y隨x的增大而減。粁=-$\frac{2a}$時,y取得最大值$\frac{4ac-^{2}}{4a}$,即頂點(diǎn)是拋物線的最高點(diǎn).③拋物線y=ax2+bx+c(a≠0)的圖象可由拋物線y=ax2的圖象向右或向左平移|$\frac{2a}$|個單位,再向上或向下平移|$\frac{4ac-^{2}}{4a}$|個單位得到的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^6}{x^2}={x^3}$ | B. | $\frac{x+m}{x+n}=\frac{m}{n}$ | C. | $\frac{-a+b}{c}=-\frac{a+b}{c}$ | D. | $\frac{1}{a}+\frac{1}=\frac{a+b}{ab}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)A與點(diǎn)C | B. | 點(diǎn)A與點(diǎn)D | C. | 點(diǎn)B與點(diǎn)C | D. | 點(diǎn)B與點(diǎn)D |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 該函數(shù)有最小值 | B. | y隨x的增大而減少 | ||
C. | 對稱軸是直線$x=\frac{1}{2}$ | D. | 當(dāng)-1<x<2時,y《<0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com