【題目】如圖所示,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為A(a,0),B(b,0),且a,
b滿足 |a+2|+=0,點C的坐標(biāo)為(0,3).
(1)求a,b的值及S三角形ABC;
(2)若點M在x軸上,且S三角形ACM=S三角形ABC,試求點M的坐標(biāo).
【答案】(1)9(2)(0,0)或(-4,0)
【解析】試題分析:(1)根據(jù)絕對值和算術(shù)平方根的非負(fù)性,求出a、b的值,求得A、B的坐標(biāo),然后根據(jù)三角形的面積公式求解;
(2)設(shè)點M的坐標(biāo)為(x,0),根據(jù)AM的距離和三角形的面積S△ACM=S△ABC可求出AM的值,從而得到M的坐標(biāo).
試題解析:(1)∵|a+2|+=0,∴a+2=0,b-4=0.
∴a=-2,b=4.
∴點A(-2,0),點B(4,0).
又∵點C(0,3),∴AB=|-2-4|=6,CO=3.
∴S三角形ABC=AB·CO=×6×3=9.
(2)設(shè)點M的坐標(biāo)為(x,0),
則AM=|x-(-2)|=|x+2|.
又∵S△ACM=S△ABC,
∴AM·OC=×9,
∴|x+2|×3=3.
∴|x+2|=2.即x+2=±2,
解得x=0或-4,
所以點M的坐標(biāo)為(0,0)或(-4,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)如果∠1=∠B,那么_______∥_______,根據(jù)是__________________________;
(2)如果∠3=∠D,那么_______∥_______,根據(jù)是__________________________;
(3)如果要使BE∥DF,必須∠1=∠_______,根據(jù)是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中,是真命題的是( )
A.相等的角是對頂角
B.同旁內(nèi)角互補(bǔ)
C.過一點不只有一條直線與已知直線垂直
D.對于直線 a、b、c,如果 b∥a,c∥a,那么 b∥c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)點M(x,y),若x,y滿足下列條件,請說出點M的位置.
(1)xy<0;(2)x+y=0;(3)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC, 點M在△ABC內(nèi),點P在線段MC上,∠ABP=2∠ACM.
(1)若∠PBC=10°,∠BAC=80°,求∠MPB的值
(2)若點M在底邊BC的中線上,且BP=AC,試探究∠A與∠ABP之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠C=90°,點D是AB的中點.
(1)如圖1,若點E、F分別是AC、BC上的點,且AE=CF,請判別△DEF的形狀,并說明理由;
(2)若點E、F分別是CA、BC延長線上的點,且AE=CF,則(1)中的結(jié)論是否仍然成立?請
說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點,點Q為直線CD上一動點,當(dāng)點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com