分析 (1)根據(jù)角平分線的性質(zhì),可得∠EBO=∠CBO,根據(jù)平行線的性質(zhì),可得∠EOB=∠CBO,根據(jù)等腰三角形的判定即可得到結(jié)論;
(2)根據(jù)角平分線的性質(zhì),可得∠EBO與CBO,∠FOC與∠FCO的關(guān)系,根據(jù)平行線的性質(zhì),可得∠EOB與∠CBO,∠FOC與∠BCO的關(guān)系,根據(jù)等腰三角形的判定,可得BE與EO,CF與FO的關(guān)系,根據(jù)線段的和差,可得答案.
解答 解:(1)△BEO是等腰三角形,
理由:∵BO平分∠ABC,
∴∠EBO=CBO,
∵EF∥BC,
∴∠EOB=∠CBO,
∴∠EBO=∠EOB,
∴BE=EO,
∴△BEO是等腰三角形;
(2)∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=CBO,∠FOC=∠FCO.
∵EF∥BC,
∴∠EOB=∠CBO,∠FOC=∠BCO,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=EO,CF=FO.
∵EO+OF=EF,
∴EF=BE+CF=8cm.
點(diǎn)評 此題考查了等腰三角形的判定,平行線的性質(zhì),利用了等量代換的思想,熟練掌握性質(zhì)與判定是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,-2) | C. | (-1,2) | D. | (-1,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x<3y | B. | -x<-y | C. | $\frac{x}{5}$>$\frac{y}{5}$ | D. | x-2015<y-2015 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com