如圖,在菱形ABCD中,∠A=60°,AB=4,O為對角線BD的中點,過O點作OE⊥AB,垂足為E.
(1)求∠ABD的度數(shù);
(2)求線段BE的長.

解:(1)在菱形ABCD中,AB=AD,∠A=60°,
∴△ABD為等邊三角形,
∴∠ABD=60°;

(2)由(1)可知BD=AB=4,
又∵O為BD的中點,
∴OB=2,
又∵OE⊥AB,及∠ABD=60°,
∴∠BOE=30°,
∴BE=1.
分析:(1)根據(jù)菱形的四條邊都相等,又∠A=60°,得到△ABD是等邊三角形,∠ABD是60°;
(2)先求出OB的長和∠BOE的度數(shù),再根據(jù)30°角所對的直角邊等于斜邊的一半即可求出.
點評:本題利用等邊三角形的判定和直角三角形30°角所對的直角邊等于斜邊的一半求解,需要熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖:在菱形ABCD中,AC=6,BD=8,則菱形的邊長為( 。
A、5B、10C、6D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,∠ABC=60°,E為AB邊的中點,P為對角線BD上任意一點,AB=4,則PE+PA的最小值為
 
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•河南)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點.點M是AB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD、AN.
(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當AM的值為
1
1
時,四邊形AMDN是矩形;
           ②當AM的值為
2
2
時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•攀枝花)如圖,在菱形ABCD中,DE⊥AB于點E,cosA=
35
,BE=4,則tan∠DBE的值是
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在菱形ABCD中,AE⊥BC,垂足為F,EC=1,∠B=30°,求菱形ABCD的周長.

查看答案和解析>>

同步練習冊答案