【題目】如圖,已知在△ABC中,∠C=90°,AB的垂直平分線MN交BC于點(diǎn)D.
(1)如果∠CAD=20°,求∠B的度數(shù);
(2)如果∠CAB=50°,求∠CAD的度數(shù);
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度數(shù).
【答案】(1)∠B=35°;(2)∠CAD=10°;(3)∠CAB=54°.
【解析】試題分析:(1)根據(jù)直角三角形的性質(zhì)求出∠ADC=70°,根據(jù)線段的垂直平分線的性質(zhì)得到DA=DB,計(jì)算即可;
(2)根據(jù)直角三角形的性質(zhì)求出∠B的度數(shù),根據(jù)線段的垂直平分線的性質(zhì)得到DA=DB,計(jì)算即可;
(3)設(shè)∠CAD=x,根據(jù)題意列出方程,解方程即可.
試題解析:(1)∵∠C=90°,∠CAD=20°,
∴∠ADC=70°,
∵DE是AB的垂直平分線,
∴DA=DB,
∴∠DAB=∠B=35°,
答:∠B的度數(shù)是35°;
(2)∵∠C=90°,∠CAB=50°,
∴∠B=40°,
∵DE是AB的垂直平分線,
∴DA=DB,
∴∠DAB=∠B=40°,
∴∠CAD=10°;
(3)設(shè)∠CAD=x,則∠DAB=∠B=2x,
則x+2x+2x=90°,
解得x=18,
則∠CAB=54°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E.
(1)求證:△ABE是等腰直角三角形;
(2)若∠CAE=15°,求證:△ABO是等邊三角形;
(3)在(2)的條件下,求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=BC,將△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)度到△A1BC1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
(1)若∠ABC=,∠DBF=,則=______°;
(2)求證:△BCF≌△BA1D;
(3)連接DF,當(dāng)∠DBF=時,判定△DBF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,求∠MON與∠AOB的關(guān)系.
(2)如果(1)中,改變∠AOB的大小,其他條件不變,求∠MON與∠AOB的關(guān)系.
(3)你從(1),(2)的結(jié)果中能發(fā)現(xiàn)什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線AB與CD之間,請說明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)E在AB與CD的上方,①請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩瓶酒精,甲瓶有升,濃度未知;乙瓶有升,濃度,從甲瓶中倒入乙瓶升酒精,搖勻后倒回一部分給甲瓶,此時甲瓶濃度為,乙瓶濃度為,此時乙瓶中有酒精( )升.
A. 5 B. 6.3 C. 5.25 D. 5.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),對稱軸為直線x=1,與y軸的交點(diǎn)B在(0,2)和(0,3)之間(包括這兩點(diǎn)),下列結(jié)論:
①當(dāng)x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣ ;④4ac﹣b2>8a;
其中正確的結(jié)論是( )
A.①③④
B.①②③
C.①②④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(1,2).過點(diǎn)A作AC∥y軸,AC=1(點(diǎn)C位于點(diǎn)A的下方),過點(diǎn)C作CD∥x軸,與函數(shù)的圖象交于點(diǎn)D,過點(diǎn)B作BE⊥CD,垂足E在線段CD上,連接OC,OD.
(1)求△OCD的面積;
(2)當(dāng)BE=AC時,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC為0.7m.
(1)求此時梯子的頂端A距地面的高度AC;
(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠(yuǎn)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com