【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),連接AF,BE相交于點(diǎn)P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C時(shí),試求點(diǎn)P經(jīng)過的路徑長.
【答案】
(1)
①證明:∵△ABC為等邊三角形,
∴AB=AC,∠C=∠CAB=60°,
又∵AE=CF,
在△ABE和△CAF中,
,
∴△ABE≌△CAF(SAS),
∴AF=BE,∠ABE=∠CAF.
又∵∠APE=∠BPF=∠ABP+∠BAP,
∴∠APE=∠BAP+∠CAF=60°.
∴∠APB=180°﹣∠APE=120°.
②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,
∴ ,即 ,所以APAF=12
(2)
若AF=BE,有AE=BF或AE=CF兩種情況.
①當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時(shí)候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時(shí)△ABP為等腰三角形,且∠ABP=∠BAP=30°,
∴∠AOB=120°,
又∵AB=6,
∴OA= ,
點(diǎn)P的路徑是 .
②當(dāng)AE=BF時(shí),點(diǎn)P的路徑就是過點(diǎn)C向AB作的垂線段的長度;因?yàn)榈冗吶切蜛BC的邊長為6,所以點(diǎn)P的路徑為: .
所以,點(diǎn)P經(jīng)過的路徑長為 或3 .
【解析】(1)①證明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的長度,再用平行線分線段成比例定理或者三角形相似定理求得 的比值,即可以得到答案.(2)當(dāng)點(diǎn)F靠近點(diǎn)C的時(shí)候點(diǎn)P的路徑是一段弧,由題目不難看出當(dāng)E為AC的中點(diǎn)的時(shí)候,點(diǎn)P經(jīng)過弧AB的中點(diǎn),此時(shí)△ABP為等腰三角形,繼而求得半徑和對(duì)應(yīng)的圓心角的度數(shù),求得答案.點(diǎn)F靠近點(diǎn)B時(shí),點(diǎn)P的路徑就是過點(diǎn)B向AC做的垂線段的長度;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過y軸上一點(diǎn)P(0,1)作平行于x軸的直線PB,分別交函數(shù)y1=x2(x≥0)與y2= (x≥0)的圖象于A1 , B1兩點(diǎn),過點(diǎn)B1作y軸的平行線交y1的圖象于點(diǎn)A2 , 再過A2作直線A2B2∥x軸,交y2的圖象于點(diǎn)B2 , 依次進(jìn)行下去,連接A1A2 , B1B2 , A2A3 , B2B3 , …,記△A2A1B1的面積為S1 , △A2B1B2的面積為S2 , △A3A2B2的面積為S3 , △A3B2B3的面積為S4 , …則S2016=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),矩OABC的位置如圖所示,點(diǎn)A,C的坐標(biāo)分別為(10,0),(0,8),點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),將△OAP沿AP翻折得到:△O′AP,直線BC與直線O′P交于點(diǎn)E,與直線O′A交于點(diǎn)F.
(1)當(dāng)O′落在直線BC上時(shí),求折痕AP的長.
(2)當(dāng)點(diǎn)P在y軸正半軸上時(shí),若△PCE與△POA相似,求直線AP的解析式;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使得 ?若存在,求點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)上學(xué)期的數(shù)學(xué)歷次測驗(yàn)成績?nèi)缦卤硭荆?/span>
測驗(yàn)類別 | 平時(shí)測驗(yàn) | 期中測驗(yàn) | 期末測驗(yàn) | ||
第1次 | 第2次 | 第3次 | |||
成績 | 100 | 106 | 106 | 105 | 110 |
(1)該同學(xué)上學(xué)期5次測驗(yàn)成績的眾數(shù)為 ,中位數(shù)為 ;
(2)該同學(xué)上學(xué)期數(shù)學(xué)平時(shí)成績的平均數(shù)為 ;
(3)該同學(xué)上學(xué)期的總成績是將平時(shí)測驗(yàn)的平均成績、期中測驗(yàn)成績、期末測驗(yàn)成績按照2:3:5的比例計(jì)算所得,求該同學(xué)上學(xué)期數(shù)學(xué)學(xué)科的總評(píng)成績(結(jié)果保留整數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟(jì)環(huán)境影響,去年1至7月,原材料價(jià)格一路攀升,義烏市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,隨著經(jīng)濟(jì)環(huán)境的好轉(zhuǎn),原材料價(jià)格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請(qǐng)觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識(shí)求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價(jià)為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個(gè)月利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)分別是菱形ABCD的邊AB,AD的中點(diǎn),且AB=5,AC=6.
(1)求對(duì)角線BD的長;
(2)求證:四邊形AEOF為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)請(qǐng)直接寫出點(diǎn)B關(guān)于點(diǎn)A對(duì)稱的點(diǎn)的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有 A、B 兩點(diǎn),所表示的有理數(shù)分別為 a、b,已知 AB=12,原點(diǎn) O 是線段AB 上的一點(diǎn),且 OA=2OB.
(1)求a,b;
(2)若動(dòng)點(diǎn) P,Q 分別從 A,B 同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn) P 的速度為每秒 2 個(gè)單位長度,點(diǎn) Q 的速度為每秒 1 個(gè)單位長度,設(shè)運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)點(diǎn) P 與點(diǎn) Q 重合時(shí),P,Q 兩點(diǎn)停止運(yùn)動(dòng).
①當(dāng) t 為何值時(shí),2OPOQ=4;
②當(dāng)點(diǎn) P 到達(dá)點(diǎn) O 時(shí),動(dòng)點(diǎn) M 從點(diǎn) O 出發(fā),以每秒 3 個(gè)單位長度的速度也向右運(yùn)動(dòng),當(dāng)點(diǎn) M 追上點(diǎn) Q 后立即返回,以同樣的速度向點(diǎn) P 運(yùn)動(dòng),遇到點(diǎn) P 后再立即返回,以同樣的速度向點(diǎn) Q 運(yùn)動(dòng),如此往返,直到點(diǎn) P,Q 停止時(shí),點(diǎn) M 也停止運(yùn)動(dòng),求在此過程中點(diǎn) M 行駛的總路程,并直接寫出點(diǎn) M 最后位置在數(shù)軸上所對(duì)應(yīng)的有理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校的學(xué)生為了對(duì)小雁塔有基本的認(rèn)識(shí),在老師的帶領(lǐng)下對(duì)小雁塔進(jìn)行了測量.測量方法如下:如圖,間接測得小雁塔地部點(diǎn)D到地面上一點(diǎn)E的距離為115.2米,小雁塔的頂端為點(diǎn)B,且BD⊥DE,在點(diǎn)E處豎直放一個(gè)木棒,其頂端為C,CE=1.72米,在DE的延長線上找一點(diǎn)A,使A、C、B三點(diǎn)在同一直線上,測得AE=4.8米.求小雁塔的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com