【題目】已知,AB為⊙O的直徑,弦BC、AF相交于點E,過點E作ED⊥AB,∠AEC=∠BED.
(1)如圖1,求證:;
(2)如圖2,當∠BAF=45°時,OC交AF于點H,作FG⊥BH于點Q,交AB于點G,連接GH,求證:∠AGH=∠BGF;
(3)如圖3,在(2)的條件下,射線HG與⊙O交于點P,過點P作PK⊥BH交AB于點M,垂足為點K,點N為BH的中點,MN=,求⊙O的半徑.
【答案】(1)詳見解析;(2)詳見解析;(3)6.
【解析】
(1)如圖1,連接BF,證△BDE≌△BFE,推出∠ABC=∠FBC,根據(jù)圓周角定理,即可得出結論;
(2)如圖2,連接OF、BF,作AS⊥AF于點A,交FG的延長線于點S,證△FSA≌△BHF,再證△SAG≌△HAG,可得∠SGA=∠AGH,即可得出結論;
(3)如圖3,過點O作OR⊥HP于點R,OT⊥BH于點T,連接BP分別證△ORH≌△OTH和△ORP≌△OTB,推出PH=BH,設∠OPR=∠OBT=α,推出PO⊥BO,∠OPB=∠OBP=45°,PG=PM,OG=OM,過點M作ML⊥BP于點L,求出tan∠PML=tan∠PBH=2,設BM=4a,則BL=ML=2a,結合N為BH的中點,GH=2MN=,過點G作GU⊥OH于點U,在Rt△GUH中,可求出GU=,即可求出a的值,可進一步求出OB的長.
(1)如圖1,連接BF,
∵AB為⊙O的直徑,
∴∠AFB=90°,
∵∠AEC=∠BED,∠AEC=∠BEF,
∴∠BEF=∠BED,
∵ED⊥AB,
∴∠BDE=∠AFB=90°,
又∵BE=BE,
∴△BDE≌△BFE(AAS),
∴∠ABC=∠FBC,
∴;
(2)如圖2,連接OF、BF,作AS⊥AF于點A,交FG的延長線于點S,
∵,
∴∠AOC=∠FOC,
∵AO=OF,
∴OC⊥AF,
∴AH=HF=AF,
∵∠BAF=45°,∠AFB=90°
∴AF=BF,
∵FG⊥BH,AS⊥AF,
∴∠S=∠BHF,
又∵∠SAF=∠HFB=90°,
∴△FSA≌△BHF(AAS),
∴AS=HF=AH,
∵∠SAG=∠GAH=45°,AG=AG,
∴△SAG≌△HAG(SAS),
∴∠SGA=∠AGH,
∴∠AGH=∠BGF;
(3)如圖3,過點O作OR⊥HP于點R,OT⊥BH于點T,連接BP,
∵△SAG≌△HAG,
∴∠AHG=∠S=∠BHF,
∵OH⊥AF,
∴∠OHG=∠OHB,
∵∠ORH=∠OTH=90°,OH=OH,
∴△ORH≌△OTH(AAS),
∴RH=TH,OR=OT,
又∵OP=OB,∠ORP=∠OTB=90°,
∴Rt△ORP≌Rt△OTB(HL),
∴PR=BT,
∴PR+RH=BT+TH,
即PH=BH,
∴∠HPB=∠HBP,
設∠OPR=∠OBT=α,
∵∠AOH=∠A=45°,
∴∠PHO=∠BHO=∠AOH﹣∠OBH=45°﹣α,
∴∠PHB=90°﹣2α,
∴∠HPB=∠HBP=45°+α,
∴∠PBO=45°,
∵PO=BO,
∴∠OPB=∠OBP=45°,
∴PO⊥AB,
∵PK⊥BH,GF⊥BH,
∴PK∥GF,
∴∠PMG=∠BGF,
∵∠PGM=∠AGH=∠BGF,
∴∠PGM=∠PMG,
∴PG=PM,
∴OG=OM,
過點M作ML⊥BP于點L,
∵∠PBH=∠BHF=45°+α,
∴tan∠PBH=tan∠BHF==2,
∵∠MPL=∠BPK,
∴∠PML=∠PBH,
∴tan∠PML=tan∠PBH=2,
設BM=4a,則BL=ML=2a,
∴PL=4a,
∴PB=6a,
∴PO=BO=6a,
∴OM=OG=2a,
∴GM=4a,
∴GM=BM,
∵N為BH的中點,
∴MN為BGH的中位線,
∴GH=2MN=,
過點G作GU⊥OH于點U,
則tan∠GHO=tan∠OHB=tan∠FBH=,
在Rt△GUH中,設GU=b,則UH=2b,GH=b,
∴b=,
∴GU=,
∴GO=2=2a,
∴a=1,
∴OB=6a=6,
即⊙O的半徑為6.
科目:初中數(shù)學 來源: 題型:
【題目】某中學組織七、八、九年級學生參加“州慶60年,夢想紅河”作文比賽.該校將收到的參賽作文進行分年級統(tǒng)計,繪制了如圖1和圖2兩幅不完整的統(tǒng)計圖. 根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應的圓心角是 度,并補全條形統(tǒng)計圖;
(2)經過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎作文中任選兩篇刊登在校刊上,把七年級特等獎作文被選登在�?系氖录洖�A,其它年級特等獎作文被選登在�?系氖录謩e記為B,C,D. 請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在�?系母怕�.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個二次函數(shù)滿足以下條件:①函數(shù)圖象與x軸的交點坐標分別為A(1,0),B(x2,y2)(點B在點A的右側);②對稱軸是x=3;③該函數(shù)有最小值是﹣2.
(1)請根據(jù)以上信息求出二次函數(shù)表達式;
(2)將該函數(shù)圖象中x>x2部分的圖象向下翻折與原圖象未翻折的部分組成圖象“G”,試結合圖象平行于x軸的直線y=m與圖象“G”的交點的個數(shù)情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠DAB=90°,DB=DC,點E、F分別為DB、BC的中點,連接AE、EF、AF.
(1)求證:AE=EF;
(2)當AF=AE時,設∠ADB=α,∠CDB=β,求α,β之間的數(shù)量關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接2016年中考,某中學對全校九年級學生進行了一次數(shù)學模擬考試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成如下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息解答下列問題:
(1)這次調査中,一共抽取了多少名學生?
(2)求樣本中表示成績?yōu)椤爸小钡娜藬?shù),并將條形統(tǒng)計圖補充完整;
(3)該學校九年級共有1000人參加了這次數(shù)學考試,估計該校九年級共有多少名學生的數(shù)學成績可以達到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點O在邊AC上,⊙O與邊AC相交于點D、與邊AB相切于點E,過點D作DP∥BC交AB于點P.
(1)求證:PD=PE;
(2)連接CP,若點E是AP的中點,OD:DC=2:1,CP=13,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠ACB=135°,AC=8,D、E分別是邊BC、AB上的一點,若tan∠DEA=2,DE=,S△DEB=4,求四邊形ACDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:
(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;
(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;
(3)小明希望構造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;
(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在矩形ABCD中,M是AD邊的中點,BM與AC垂直,交直線AC于點N,連接DN,則下列四個結論中:①CN=2AN;②DN=DC;③tan∠CAD=;④△AMN∽△CAB.正確的有( �。�
A.①②③④B.①②③C.①②④D.②③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com