證明:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,∠B=∠ADC,
∴∠ADE=∠DEC,
∵∠AFE=∠B,
∴∠AFE=∠ADC,
∵∠AFD=180°-∠AFE,∠C=180°-∠ADC,
∴∠AFD=∠C,
∴∠DAF=∠CDE;
(2)解:△ADF∽△DEC.
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠ADE=∠CED,∠B+∠C=180°,
∵∠AFE+∠AFD=180°,∠AFE=∠B,
∴∠AFD=∠C,
∴△ADF∽△DEC;
(3)解:∵四邊形ABCD是平行四邊形,
∴AD∥BC CD=AB=4,
又∵AE⊥BC,
∴AE⊥AD,
在Rt△ADE中,DE=
=
=6
∵△ADF∽△DEC,
∴
=
,
∴
=
,
∴AF=2
.
分析:(1)先根據(jù)四邊形ABCD是平行四邊形,得出AD∥BC,∠B=∠ADC,再由∠AFE=∠B可得出∠AFE=∠ADC,通過等量代換可得出∠DAF=∠CDE;
(2)由四邊形ABCD是平行四邊形,可得出AD∥BC,AB∥CD,∠ADE=∠CED,∠B+∠C=180°,再由∠AFE=∠B,可得出∠AFD=∠C,故可得出結論;
(3)先由四邊形ABCD是平行四邊形,可得出AD∥BC,CD=AB=4,再由AE⊥BC,得出AE⊥AD,由勾股定理求出DE的長,由△ADF∽△DEC可得出兩三角形的邊對應成比例,進而可得出AF的長.
點評:本題考查的是相似三角形的判定與性質,勾股定理及平行四邊形的性質,此題有一定的綜合性,難度適中.