分析 首先連接OP,由矩形的兩條邊AB、BC的長分別為3和4,可求得OA=OD=2.5,△AOD的面積,然后由S△AOD=S△AOP+S△DOP=$\frac{1}{2}$OA•PE+OD•PF求得答案.
解答 解:連接OP,
∵矩形的兩條邊AB、BC的長分別為3和4,
∴S矩形ABCD=AB•BC=12,OA=OC,OB=OD,AC=BD=5,
∴OA=OD=2.5,
∴S△ACD=$\frac{1}{2}$S矩形ABCD=6,
∴S△AOD=$\frac{1}{2}$S△ACD=3,
∵S△AOD=S△AOP+S△DOP=$\frac{1}{2}$OA•PE+$\frac{1}{2}$OD•PF=$\frac{1}{2}$×2.5×PE+$\frac{1}{2}$×2.5×PF=$\frac{5}{4}$(PE+PF)=3,
解得:PE+PF=2.4.
故答案為:2.4.
點評 此題考查了矩形的性質(zhì)以及三角形面積問題.此題難度適中,注意掌握輔助線的作法以及掌握整體數(shù)學(xué)思想的運用是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (x2m)n=x2m+n | B. | (x2)3=x6 | C. | (-m3)2=-m6 | D. | (x3)2=x9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com