已知:在圖中,已知點A、B、C的坐標(biāo),分別求三角形ABC的面積.
(1)A(-1,0),B(3,0),C(4,-3);
(2)A(2,0),B(0,1),C(0,4).
分析:(1)根據(jù)點的坐標(biāo)得到AB=4,而AB邊上的高為3,然后根據(jù)三角形面積公式計算;
(2)根據(jù)點的坐標(biāo)得到BC=3,而BC邊上的高為2,然后根據(jù)三角形面積公式計算.
解答:解:(1)S△ABC=
1
2
×(3+1)×3=6;
(2)S△ABC=
1
2
×(4-1)×2=3.
點評:本題考查了三角形的面積:三角形的面積等于底邊長與高線乘積的一半,即S=
1
2
×底×高.也考查了坐標(biāo)與圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

●探究:
(1)在圖中,已知線段AB,CD,其中點分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點坐標(biāo)為
 
;
②若C(-2,2),D(-2,-1),則F點坐標(biāo)為
 

(2)在圖中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為A(a,b),B(c,d),AB中點為D(x,y)時,x=
 
,y=
 
.(不必證明)
●運(yùn)用:
在圖中,一次函數(shù)y=x-2與反比例函數(shù)y=
3x
的圖象交點為A,B.
①求出交點A,B的坐標(biāo);
②若以A,O,B,P為頂點的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖1,已知矩形ABCD中,點E是BC上的一動點,過點E作EF⊥BD于點F,EG⊥AC于點G,CH⊥BD于點H,試證明CH=EF+EG;精英家教網(wǎng)
(2)若點E在BC的延長線上,如圖2,過點E作EF⊥BD于點F,EG⊥AC的延長線于點G,CH⊥BD于點H,則EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(3)如圖3,BD是正方形ABCD的對角線,L在BD上,且BL=BC,連接CL,點E是CL上任一點,EF⊥BD于點F,EG⊥BC于點G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(4)觀察圖1、圖2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然具有EF、EG、CH這樣的線段的關(guān)系,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:遼寧省鐵嶺市2010年中考數(shù)學(xué)試題 題型:044

如圖,在平面直角坐標(biāo)系中,已知點A、BC的坐標(biāo)分別為(1,0),(5,0)(0,2)

(1)求過AB、C三點的拋物線解析式.

(2)若點PA點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CEPC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運(yùn)動的時間為t秒,(0t6)設(shè)△PBF的面積為S

①求St的函數(shù)關(guān)系式.

②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?

(3)P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市大邑縣韓場鎮(zhèn)學(xué)校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

●探究:
(1)在圖中,已知線段AB,CD,其中點分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點坐標(biāo)為______;
②若C(-2,2),D(-2,-1),則F點坐標(biāo)為______;
(2)在圖中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為A(a,b),B(c,d),AB中點為D(x,y)時,x=______,y=______.(不必證明)
●運(yùn)用:
在圖中,一次函數(shù)y=x-2與反比例函數(shù)的圖象交點為A,B.
①求出交點A,B的坐標(biāo);
②若以A,O,B,P為頂點的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省中考數(shù)學(xué)押題試卷(三)(解析版) 題型:解答題

●探究:
(1)在圖中,已知線段AB,CD,其中點分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點坐標(biāo)為______;
②若C(-2,2),D(-2,-1),則F點坐標(biāo)為______;
(2)在圖中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為A(a,b),B(c,d),AB中點為D(x,y)時,x=______,y=______.(不必證明)
●運(yùn)用:
在圖中,一次函數(shù)y=x-2與反比例函數(shù)的圖象交點為A,B.
①求出交點A,B的坐標(biāo);
②若以A,O,B,P為頂點的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案