【題目】如圖,正方形紙片,為正方形邊上的一點(不與點,點重合).將正方形紙片折疊,使點落在點處,點落在點處,交于點,折痕為,連接交于點,連接.下列結(jié)論:①;②;③平分;④;⑤,其中正確結(jié)論的個數(shù)是( )
A.B.C.D.
【答案】B
【解析】
①③利用正方形的性質(zhì)、翻折不變性即可解決問題;
②構(gòu)造全等三角形即可解決問題;
④如圖2,過B作BQ⊥PH,垂足為Q.證明△ABP≌△QBP(AAS),以及△BCH≌△BQH即可判斷;
⑤利用特殊位置,判定結(jié)論即可;
解:根據(jù)翻折不變性可知:PE=BE,故①正確;
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH∠EPB=∠EBC∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH,即平分,故③正確;
如圖1中,作FK⊥AB于K.設(shè)EF交BP于O.
∵∠FKB=∠KBC=∠C=90°,
∴四邊形BCFK是矩形,
∴KF=BC=AB,
∵EF⊥PB,
∴∠BOE=90°,
∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,
∴∠ABP=∠EFK,
∵∠A=∠EKF=90°,
∴△ABP≌△KFE(ASA),
∴EF=BP,故②正確,
如圖2,過B作BQ⊥PH,垂足為Q.
由(1)知∠APB=∠BPH,
在△ABP和△QBP中,
∠APB=∠BPH,∠A=∠BQP,BP=BP,
∴△ABP≌△QBP(AAS).
∴AP=QP,AB=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,BH=BH,
∴△BCH≌△BQH(HL)
∴QH=HC,
∴PH=PQ+QH=AP+HC,故④正確;
當點P與A重合時,顯然MH>MF,故⑤錯誤,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B為定點,直線l∥AB,P是直線l上一動點.對于下列各值:①線段AB的長②△PAB的周長③△PAB的面積④∠APB的度數(shù)其中不會隨點P的移動而變化的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小穎利用一個銳角是30°的三角板測量一棵樹的高度,已知她與樹之間的水平距離BE為5m,AB為1.5m(即小穎的眼睛距地面的距離),那么這棵樹高是( )
A.4m
B. m
C.(5 + )m
D.( + )m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x﹣1)2﹣1.
(1)該拋物線的對稱軸是 , 頂點坐標;
(2)選取適當?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標系內(nèi)描點畫出該拋物線的圖象;
x | … | … | |||||
y | … | … |
(3)根據(jù)圖象,直接寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若α、β為方程2x2﹣5x﹣1=0的兩個實數(shù)根,則2α2+3αβ+5β的值為( )
A.﹣13
B.12
C.14
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
請根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)請補全頻數(shù)分布直方圖;
(3)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學(xué)生中成績“優(yōu)”等約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀]
在平面直角坐標系中,以任意兩點P( x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).
[運用]
(1)如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為 .
(2)在直角坐標系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構(gòu)成平行四邊形的頂點,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當天的枇杷售價每噸2000元,草莓售價每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當天全部售出,銷售總額達y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若要求當天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com