下列圖中的“笑臉”,由下圖按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到的是( 。
A.B.C.D.

根據(jù)旋轉(zhuǎn)的性質(zhì),圖片按逆時(shí)針?lè)较蛐D(zhuǎn)90度,即正立狀態(tài)轉(zhuǎn)為逆時(shí)針的橫向狀態(tài),從而可確定為A圖.
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示的兩個(gè)三角形是否成中心對(duì)稱?若是,請(qǐng)畫出對(duì)稱中心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將點(diǎn)A(-3
3
,0)繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC繞C點(diǎn)旋轉(zhuǎn)后,頂點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,試確定頂點(diǎn)B對(duì)應(yīng)點(diǎn)的位置,以及旋轉(zhuǎn)后的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn).

(1)在圖1中,DE交AB于M,DF交BC于N.①證明DM=DN;②在這一過(guò)程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的;若不發(fā)生變化,求出其面積;
(2)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;
(3)繼續(xù)旋轉(zhuǎn)至如圖3的位置,延長(zhǎng)FD交BC于N,延長(zhǎng)ED交AB于M,DM=DN是否仍然成立?若成立,請(qǐng)給出寫出結(jié)論,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,四邊形ABCD和四邊形CDFE是邊長(zhǎng)相等的兩個(gè)正方形,其中A、D、F和B、C、E各成一直線,將正方形ABCD繞著一點(diǎn)旋轉(zhuǎn)一定角度后與正方形CDFE重合,這樣的旋轉(zhuǎn)中心共有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的面積為3,點(diǎn)E是DC邊上一點(diǎn),DE=1,將線段AE繞點(diǎn)A旋轉(zhuǎn),使點(diǎn)E落在直線BC上,落點(diǎn)記為F,則FC的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(-2,0),等邊三角形AOC經(jīng)過(guò)平移或軸對(duì)稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是______個(gè)單位長(zhǎng)度;△AOC與△BOD關(guān)于直線對(duì)稱,則對(duì)稱軸是______;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是______度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1、2是兩個(gè)相似比為1:
2
的等腰直角三角形,將兩個(gè)三角形如圖3放置,小直角三角形的斜邊與大直角三角形的一直角邊重合.
(1)在圖3中,繞點(diǎn)D旋轉(zhuǎn)小直角三角形,使兩直角邊分別與AC、BC交于點(diǎn)E,F(xiàn),如圖4.求證:AE2+BF2=EF2;
(2)若在圖3中,繞點(diǎn)C旋轉(zhuǎn)小直角三角形,使它的斜邊和CD延長(zhǎng)線分別與AB交于點(diǎn)E、F,如圖5,此時(shí)結(jié)論AE2+BF2=EF2是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.


(3)如圖6,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),滿足△CEF的周長(zhǎng)等于正方形ABCD的周長(zhǎng)的一半,AE、AF分別與對(duì)角線BD交于M、N,試問(wèn)線段BM、MN、DN能否構(gòu)成三角形的三邊長(zhǎng)?若能,指出三角形的形狀,并給出證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案