【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽.并從參加比賽的學(xué)生中隨機抽取部分學(xué)生的演講成績進行統(tǒng)計(等級記為:優(yōu)秀,:良好,:一般,:較差),并制作了如下統(tǒng)計圖表(部分信息未給出).
等級 | 人數(shù) |
20 | |
10 |
請根據(jù)統(tǒng)計圖表中的信息解答下列問題:
(1)這次共抽取了______名參加演講比賽的學(xué)生,統(tǒng)汁圖中________,_______;
(2)求扇形統(tǒng)計圖中演講成績等級為“一般”所對應(yīng)扇形的圓心角的度數(shù);
(3)若該校學(xué)生共2000人,如果都參加了演講比賽,請你估計成績達到優(yōu)秀的學(xué)生有多少人?
(4)若演講比賽成績?yōu)?/span>等級的學(xué)生中恰好有2名女生,其余的學(xué)生為男生,從等級的學(xué)生中抽取兩名同學(xué)參加全市演講比賽,請用列表或畫樹狀圖的方法求出“恰好抽中—名男生和一名女生”的概率.
【答案】(1)50,40,30;(2);(3)200人;(4)
【解析】
(1)根據(jù)D等級的人數(shù)和對應(yīng)百分比可得抽取的人數(shù),再分別求得等級B的人數(shù)所占百分比和等級C的人數(shù)所占百分比即可得出a,b的值;
(2)扇形統(tǒng)計圖中演講成績等級為“一般”的為C類,所對應(yīng)扇形的圓心角的度數(shù)為:
(3)用等級A的人數(shù)所占百分比乘以2000即可
(4)用列表法列出所有情況,再根據(jù)概率公式即可求得
(1)這次抽取的演講比賽的學(xué)生人數(shù)為10÷20%=50(名)
等級B的學(xué)生所占百分比為:×100%=40%
∴a=40
等級C的學(xué)生所占百分比為110%20%40%=30%
∴b=30
故答案為:50,40,30
(2)扇形統(tǒng)計圖中演講成績等級為“一般”的為C類,所對應(yīng)扇形的圓心角的度數(shù)為:
故答案為:
(3)估計成績達到優(yōu)秀的人數(shù)為:2000×10%=200(人)
故答案為:200人
(4)A等級的學(xué)生共有50×10%=5(名),其中有2名女生,那么男生有3名,
列表分析如下:
女1 | 女2 | 男1 | 男2 | 男3 | |
女1 | 女1女2 | 女1男1 | 女1男2 | 女1男3 | |
女2 | 女2女1 | 女2男1 | 女2男2 | 女2男3 | |
男1 | 男1女1 | 男1女2 | 男1男2 | 男1男3 | |
男2 | 男2女1 | 男2女2 | 男2男1 | 男2男3 | |
男3 | 男3女1 | 男3女2 | 男3男1 | 男3男2 |
由上表可知,一共有20種等可能的結(jié)果,其中抽中一名男生和一名女生的結(jié)果有12種,
則P(抽中一名男生和一名女生)=
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階,下圖是其中的甲、乙兩段臺階的示意圖,圖中的數(shù)字表示每一級臺階的高度(單位:cm).請你用所學(xué)過的有關(guān)統(tǒng)計知識,回答下列問題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差:
(1)分別求甲、乙兩段臺階的高度平均數(shù);
(2)哪段臺階走起來更舒服?與哪個數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關(guān)?
(3)為方便游客行走,需要陳欣整修上山的小路,對于這兩段臺階路.在總高度及臺階數(shù)不變的情況下,請你提出合理的整修建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“創(chuàng)建文明校園”活動周,活動周設(shè)置了“A:文明禮儀,B:生態(tài)環(huán)境,C:交通安全,D:衛(wèi)生保潔”四個主題,每個學(xué)生選一個主題參與.為了解活動開展情況,學(xué)校隨機抽取了部分學(xué)生進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
(1)本次隨機調(diào)查的學(xué)生人數(shù)是 人;
(2)請你補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“A”所在扇形的圓心角等于 度;
(4)小明和小華各自隨機參加其中的一個主題活動,請用畫樹狀圖或列表的方式,求他們恰好同時選中“文明禮儀”或“生態(tài)環(huán)境”主題的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一居民樓AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為38°.從距離樓底B點2米的P處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為28°.已知樹高EF=8米,求塔CD的高度.(參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開圖為如圖所示的扇形.將扇形沿折疊,使點恰好落在上的點,則弧長與圓錐的底面周長的比值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形,且,,為弧上任意一點,過點作于點,設(shè)的內(nèi)心為,連接、.當(dāng)點從點運動到點時,內(nèi)心所經(jīng)過的路徑長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF.
(1)求證:AE=CF;
(2)若BE=DE,求證:四邊形EBFD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B,D,E為格點,C為,的延長線的交點.
(Ⅰ)的結(jié)果為_________________.
(Ⅱ)若點R在線段上,點S在線段上,點T在線段上,且滿足四邊形為菱形,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出菱形,并簡要說明點R,S,T的位置是如何找到的(不要求證明)____________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com