在5×5的邊長為1的方格內(nèi)畫△ABC,使它的頂點(diǎn)都在格點(diǎn)上,且三邊長分別為數(shù)學(xué)公式,5,數(shù)學(xué)公式
(1)在方格內(nèi)畫出圖形;
(2)求出△ABC的面積;
(3)求出最長邊上的高.

解:(1)如圖所示:

(2)△ABC的面積:4×4-×1×4-×4×3-×3×1=6.5;

(3)過A作AE⊥BC,
AE•BC=5×AE=6.5,
解得:AE=
分析:(1)根據(jù)勾股定理求得△ABC各邊是以多長為直角邊的邊長,再畫出三角形;
(2)根據(jù)題意畫出圖形,把△ABC放在一個矩形里面算出面積即可;
(3)根據(jù)第(2)問求得的面積,再利用面積公式即可求得其邊上的高.
點(diǎn)評:此題主要考查了勾股定理,以及計算三角形的面積,關(guān)鍵是正確畫出圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、B、C均落在格點(diǎn)上.
(Ⅰ)△ABC的面積等于
6
6
;
(Ⅱ)若四邊形DEFG是△ABC中所能包含的面積最大的正方形,請你在如圖所示的網(wǎng)格中,用直尺和三角尺畫出該正方形,并簡要說明畫圖方法(不要求證明)
取格點(diǎn)P,連接PC,過點(diǎn)A畫PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過點(diǎn)D畫CB的平行線,與AB相交得點(diǎn)E,分別過點(diǎn)D、E畫PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求
取格點(diǎn)P,連接PC,過點(diǎn)A畫PC的平行線,與BC交于點(diǎn)Q,連接PQ與AC相交得點(diǎn)D,過點(diǎn)D畫CB的平行線,與AB相交得點(diǎn)E,分別過點(diǎn)D、E畫PC的平行線,與CB相交得點(diǎn)G,F(xiàn),則四邊形DEFG即為所求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點(diǎn),并保證在有情況時他們所需走的最大距離(看守點(diǎn)到本區(qū)域內(nèi)最遠(yuǎn)處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點(diǎn)),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠(yuǎn)?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

三個牧童A,B,C在一塊正方形的牧場上看守一群牛,為保證公平合理,他們商量將牧場劃分為三塊分別看守,劃分的原則是:①每個人看守的牧場面積相等;②在每個區(qū)域內(nèi),各選定一個看守點(diǎn),并保證在有情況時他們所需走的最大距離(看守點(diǎn)到本區(qū)域內(nèi)最遠(yuǎn)處的距離)相等.按照這一原則,他們先設(shè)計了一種如圖1的劃分方案:把正方形牧場分成三塊全等的長方形,大家分頭守在這三個長方形的中心(對角線交點(diǎn)),看守自己的一塊牧場.
過了一段時間,牧童B和牧童C又分別提出里新的劃分方案.
牧童B的劃分方案如圖2:三塊長方形的面積相等,牧童的位置在三個小長方形的中心.
牧童C的劃分方案如圖3:把正方形的牧場分成三塊長方形,牧童的位置在三個小長方形的中心,并保證在有情況時三個人所需走的最大距離相等.請回答:

(I)長方形的兩條對角線是相等且互相平分的嗎?
(II)牧童B的劃分方案中,哪個牧童在有情況時所需走的最大距離較遠(yuǎn)?
(III)牧童C的劃分方案是否符合他們商量的劃分原則?為什么?(提示:在計算時可取正方形邊長為2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(27):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小.
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省恩施州中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•恩施州)現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設(shè)計的水槽的橫截面面積更大.畫出你設(shè)計的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案