5.如圖,數(shù)軸上點A表示的數(shù)是-1,原點O是線段AB的中點,∠BAC=30°,∠ABC=90°,以點A為圓心,AC為半徑畫弧,交數(shù)軸于點D,則點D表示的數(shù)是(  )
A.$\frac{2\sqrt{3}}{3}-1$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}-1$

分析 首先求得AB的長,然后在直角△ABC中利用三角函數(shù)即可求得AC的長,則AD=AC即可求得,然后求得OD即可.

解答 解:∵點A表示-1,O是AB的中點,
∴OA=OB=1,
∴AB=2,
在直角△ABC中,AC=$\frac{AB}{cos∠BAC}$=$\frac{2}{\frac{\sqrt{3}}{2}}$=$\frac{4\sqrt{3}}{3}$,
∴AD=AC=$\frac{4\sqrt{3}}{3}$,
∴OD=$\frac{4\sqrt{3}}{3}-1$.
故選D.

點評 本題考查了三角函數(shù),在直角三角形中利用三角函數(shù)求得AC的長是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.一個三角形的兩邊長為4和6,第三邊的邊長是方程(x-2)(x-7)=0的兩根,則這個三角形的周長是(  )
A.12B.12或17C.17D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,一圓弧形鋼梁的拱高CD為8m,跨徑AB為40m,則這鋼梁圓弧的半徑是( 。
A.28mB.29mC.30mD.31m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,小明作圖如下:
(1)用量角器作∠MAN=36°;
(2)以A為圓心適當(dāng)長為半徑作圓弧,分別交AM,AN于B,C兩點,連結(jié)BC;
(3)以B為圓心適當(dāng)長為半徑作圓弧,分別交AB,BC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心大于$\frac{1}{2}$EF長為半徑作圓弧,兩條圓弧交于點K,連結(jié)BK并延長交AC于點D.
若AD=a,則由以上作圖可得AB為( 。
A.$\frac{\sqrt{5}-1}{2}$aB.$\frac{3-\sqrt{5}}{2}$aC.$\frac{\sqrt{5}+1}{2}a$D.$\frac{3+\sqrt{5}}{2}$a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.某商場為促進消費,方便消費者停車,擬將商場門口某區(qū)域改建為停車場.如圖,已知該區(qū)域邊界處有臺階五級,每個臺階高150mm,寬300mm,現(xiàn)把臺階處改建為斜坡以方便汽車出入,為保證不損壞車的底盤,臺階下面設(shè)置緩坡帶,使斜坡的傾斜角為5.711°,則臺階下面增加緩坡帶的水平寬OA為多少m?(參考數(shù)據(jù)tan5.711°≈0.1000,sin5.711°≈0.09951,cos5.711°≈0.9950).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.我區(qū)某校為調(diào)查學(xué)生的視力變化情況,從全校九年級學(xué)生中抽取了部分學(xué)生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,并將所得數(shù)據(jù)處理后,繪制成折線統(tǒng)計圖和扇形統(tǒng)計圖如下:

解答下列問題:
(1)該校共抽取了多少名九年級學(xué)生?
(2)若該校共有1100名九年級學(xué)生,請你估計該校九年級視力不良(4.9以下)的學(xué)生大約有多少人?
(3)根據(jù)統(tǒng)計圖提供的信息,談?wù)勀愕母邢耄ú怀^30字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在平面直角坐標(biāo)系中,一次函數(shù)圖象與x軸,y軸分別交于點A(8,0),B(0,4),點C的坐標(biāo)為(3,0),動點D是射線BO上一個動點,連結(jié)CD,過點C作CD⊥FC,交一次函數(shù)圖象于點F.
(1)求這個一次函數(shù)的解析式;
(2)過點F作FE⊥x軸,垂足為點E,當(dāng)△OCD與△EFC全等時,求出滿足條件的點F的坐標(biāo);
(3)點D在運動過程中,是否存在使△ACF是等腰三角形?若存在請求出點F的坐標(biāo);不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,△ABC中,AB>AC,延長CA至點G,邊BC的垂直平分線DF與∠BAG的角平分線交于點D,與AB交于點H,F(xiàn)為垂足,DE⊥AB于E.下列說法正確的是③.(填序號)
①BH=FC;②∠GAD=$\frac{1}{2}$(∠B+∠HCB);③BE-AC=AE;④∠B=∠ADE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.已知(-3,y1),(-15,y2),(2,y3)在反比例函數(shù)y=-$\frac{a^2}{x}$上,則y1,y2,y3的大小關(guān)系為( 。
A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2

查看答案和解析>>

同步練習(xí)冊答案