【題目】已知:如圖,ABCD中,CD=CB=2,∠C=60°,點E是CD邊上自D向C的動點(點E運動到點C停止運動),連結(jié)AE,以AE為一邊作等邊△AEP,連結(jié)DP.
(1)求證:△ABE≌△ADP;
(2)點P隨點E的運動而運動,請直接寫出點P的運動路徑長

【答案】
(1)證明:在ABCD中,

∵BC=CD,

ABCD是菱形,

∴AB=AD,

∵△AEP是等邊三角形,

∴AP=AE,∠PAE=60°,

∵∠BAD=∠C=60°,

∴∠PAE=∠DAB,

∴∠PAE﹣∠DAE=∠DAB﹣∠DAE,

即∠1=∠2,

在△ABE與△ADP中,

,

∴△ABE≌△ADP(SAS)


(2)2
【解析】(2)解:∵點E在CD邊上自D向C的運動, ∴點E的運動路徑長是2,
∴點P的運動路徑長為:2.
所以答案是:2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中點,P是BC邊上的一動點(P與B,C不重合),連接PM并延長交AD的延長線于Q.

(1)試說明△PCM≌△QDM.

(2)當點P在點B、C之間運動到什么位置時,四邊形ABPQ是平行四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一個長方形的三個頂點坐標分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標(  )

A. (5,3) B. (3,5) C. (7,3) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:

的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、分別是A,BC的對應(yīng)點,試畫出

連接、,則線段、的位置關(guān)系為______,線段的數(shù)量關(guān)系為______;

平移過程中,線段AB掃過部分的面積為______平方單位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).

(1)求直線AB的解析式;

(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;

(3)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCED的外部時,則∠A∠1∠2之間有一種數(shù)量關(guān)系始終保持不變,請試著找一找這個規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )

A. 2∠A=∠1﹣∠2 B. 3∠A=2∠1﹣∠2

C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)因式分解:﹣xyz2+4xyz﹣4xy;

2)因式分解:9m+n2m﹣n2

3)解方程: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CDBCE,OAC的中點,AB=,AD=2,BC=3,下列結(jié)論:

①∠CAE=30;②AC=2AB;③SADC=2SABE;④BO⊥CD,其中正確的是()

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.

(1)求證:∠ADB=∠CDB;

(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

同步練習冊答案