在梯形ABCD中,AD∥BC,AB=CD,E為AD中點(diǎn).
(1)求證:△ABE≌△DCE;
(2)若BE平分∠ABC,且AD=10,求AB的長.

【答案】分析:(1)根據(jù)等腰梯形的性質(zhì)可得∠BAE=∠CDE,再根據(jù)SAS即可證明;
(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可發(fā)現(xiàn)等腰三角形ABE,從而求解.
解答:(1)證明:∵AD∥BC,AB=CD,
∴∠BAE=∠CDE.
又E為AD中點(diǎn),∴AE=ED.
∴△ABE≌△DCE.

(2)解:∵AE∥BC,
∴∠AEB=∠EBC.
又BE平分∠ABC,
∴∠ABE=∠EBC.
∴∠ABE=∠AEB,
∴AB=AE.
,
∴AB=5.
點(diǎn)評:此題主要是運(yùn)用了等腰梯形的性質(zhì)、全等三角形的判定以及角平分線的定義和等腰三角形的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在梯形ABCD中,若AB∥CD,BD=AD,∠BCD=110°,∠CBD=30°,則∠ADC=
140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),給出下面三個論斷:①AD=BC;②DE=CE;③AE=BE.請你以其中的兩個論斷為條件,填入“已知”欄中,以一個論斷作為結(jié)論,填入“求證”欄中,使之成為一個正確的命題,并證明之.
已知:如圖,在梯形ABCD中,AB∥CD,E是AB邊上的點(diǎn),
AD=BC,AE=BE
AD=BC,AE=BE

求證:
DE=CE
DE=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點(diǎn)A作AE∥DB交CB的延長線于點(diǎn)E.
(1)試說明∠ABD=∠CBD.
(2)若∠C=2∠E,試說明AB=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=AD,BD=BC,∠A=100°,則∠BDC的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,AB=
8
cm,AD=3cm,DC=
5
cm,∠B=45°,點(diǎn)P是下底BC邊上的一個動點(diǎn),從B向C以2cm/s的速度運(yùn)動,到達(dá)點(diǎn)C時停止運(yùn)動,設(shè)運(yùn)動的時間為t(s).
(1)求BC的長;
(2)當(dāng)t為何值時,四邊形APCD是等腰梯形;
(3)當(dāng)t為何值時,以A、B、P為頂點(diǎn)的三角形是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案