【題目】如圖,直線y=2x+6交x軸于A,交y軸于B.
(1)直接寫出A( , ),B( , );
(2)如圖1,點(diǎn)E為直線y=x+2上一點(diǎn),點(diǎn)F為直線y=x上一點(diǎn),若以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)E,F的坐標(biāo)
(3)如圖2,點(diǎn)C(m,n)為線段AB上一動點(diǎn),D(﹣7m,0)在x軸上,連接CD,點(diǎn)M為CD的中點(diǎn),求點(diǎn)M的縱坐標(biāo)y和橫坐標(biāo)x之間的函數(shù)關(guān)系式,并直接寫出在點(diǎn)C移動過程中點(diǎn)M的運(yùn)動路徑長.
【答案】(1)﹣3,0,0,6;(2)E(5,7),F(2,1)或E(11,13),F(﹣14,﹣7);(3).
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)因?yàn)?/span>A,B,E,F為頂點(diǎn)的四邊形是平行四邊形,推出AB=EF,AB∥EF,設(shè)E(m,m+2),則F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系數(shù)法求出m即可;
(3)求出點(diǎn)M的坐標(biāo)(用m表示),即可解決問題,利用特殊位置求出點(diǎn)M的坐標(biāo),可以解決點(diǎn)C移動過程中點(diǎn)M的運(yùn)動路徑長;
解:(1)對于直線y=2x+6,令x=0,得到y=6,
令y=0,得到x=﹣3,
∴A(﹣3,0),B(0,6),
故答案為﹣3,0,0,6;
(2)∵A,B,E,F為頂點(diǎn)的四邊形是平行四邊形,
∴AB=EF,AB∥EF,設(shè)E(m,m+2),則F(m+3,m+8)或(m﹣3,m﹣4),
把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,
∴E(﹣13,﹣11),F(﹣10,﹣5),
把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,
∴E(5,7),F(2,1),
當(dāng)AB為對角線時(shí),設(shè)E(m,m+2),則F(m﹣3,6﹣m),
把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,
∴E(11,13),F(﹣14,﹣7).
(3)∵C(m,n)在直線y=2x+6上,
∴n=2m+6,
∴C(m,2m+6),
∵D(﹣7m,0),CM=MD,
∴M(﹣3m,m+3),
令x=﹣3m,y=m+3,
∴y=﹣x+3,
當(dāng)點(diǎn)C與A重合時(shí),m=﹣3,可得M(9,0),
當(dāng)點(diǎn)C與B重合時(shí),m=0,可得M(0,3),
∴點(diǎn)C移動過程中點(diǎn)M的運(yùn)動路徑長為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示),
(1)折疊紙面,使表示的點(diǎn)1與-1重合,則-2表示的點(diǎn)與 表示的點(diǎn)重合;
(2)折疊紙面,使-1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問題:
① 5表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
②表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;
③若數(shù)軸上A、B兩點(diǎn)之間距離為9(A在B的左側(cè)),且A、B兩點(diǎn)經(jīng)折疊后重合,此時(shí)點(diǎn)A表示的數(shù)是 、點(diǎn)B表示的數(shù)是 .
(3)已知在數(shù)軸上點(diǎn)A表示的數(shù)是a,點(diǎn)A移動4個(gè)單位,此時(shí)點(diǎn)A表示的數(shù)和a是互為相反數(shù),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點(diǎn) 的切線交 的延長線于點(diǎn) ,且 .
(1)求 的度數(shù);
(2)若 =3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延長線于F,點(diǎn)G為EF的中點(diǎn),連結(jié)DG.
(1)求證:BC=DF;
(2)連BD,求BD:DG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角△ABC中,BC=AC,∠ACB=90°,將該三角形在直角坐標(biāo)系中放置.
(1)如圖(1),過點(diǎn)A作AD⊥x軸,當(dāng)B點(diǎn)為(0,1),C點(diǎn)為(3,0)時(shí),求OD的長;
(2)如圖(2),將斜邊頂點(diǎn)A、B分別落在y軸上、x軸上,若A點(diǎn)為(0,1),B點(diǎn)為(4,0),求C點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點(diǎn)P(x1,y1)平移后的對應(yīng)點(diǎn)為P′(x1+6,y1+4).
(1)請?jiān)趫D中作出△A′B′C′;
(2)寫出點(diǎn)A′、B′、C′的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點(diǎn)的坐標(biāo)分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△AB′C′,點(diǎn)B,C的對應(yīng)點(diǎn)分別為點(diǎn)B′,C′,
(1)畫出△AB′C′;
(2)寫出點(diǎn)B′,C′的坐標(biāo);
(3)求出在△ABC旋轉(zhuǎn)的過程中,點(diǎn)C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中, BD是∠ABC的平分線,過點(diǎn)C作CE⊥BD,交 BD的延長線于點(diǎn)E,∠ABC=60°,∠ECD=15°.
(1)直接寫出∠ADB的度數(shù)是_______;
(2)求證:BD=AB;
(3)若AB=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com