【題目】如圖在直角坐標(biāo)系中,已知A(0,a),B(b,0)C(3,c)三點(diǎn),若a,b,c滿足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
【答案】(1)a=2,b=3,c=4;(2)9;(3)存在點(diǎn)P(18,﹣9)或(﹣18,9),使△AOP的面積為四邊形AOBC的面積的兩倍.
【解析】
(1)根據(jù)“幾個非負(fù)數(shù)相加和為0,則每一個非負(fù)數(shù)的值均為0”解出a,b,c的值;
(2)由點(diǎn)A、O、B、C的坐標(biāo)可得四邊形AOBC為直角梯形,根據(jù)直角梯形的面積公式計算即可;
(3)設(shè)存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍.根據(jù)面積列出方程×2×|x|=|x|=2×9,解方程即可.
解:(1)∵|a﹣2|+(b﹣3)2+=0,
∴a﹣2=0,b﹣3=0,c﹣4=0,
∴a=2,b=3,c=4;
(2)∵A(0,2),O(0,0),B(3,0),C(3,4);
∴四邊形AOBC為直角梯形,且OA=2,BC=4,OB=3,
∴四邊形AOBC的面積=×(OA+BC)×OB=×(2+4)×3=9;
(3)設(shè)存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍.
∵△AOP的面積=×2×|x|=|x|,
∴|x|=2×9,
∴x=±18
∴存在點(diǎn)P(18,﹣9)或(﹣18,9),
使△AOP的面積為四邊形AOBC的面積的兩倍.
故答案為:(1)a=2,b=3,c=4;(2)9;(3)存在點(diǎn)P(18,﹣9)或(﹣18,9),使△AOP的面積為四邊形AOBC的面積的兩倍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別相交于點(diǎn)A、B,再將△A0B沿直錢CD折疊,使點(diǎn)A與點(diǎn)B重合.折痕CD與x軸交于點(diǎn)C,與AB交于點(diǎn)D.
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)求OC的長度,并求出此時直線BC的表達(dá)式;
(3)直線BC上是否存在一點(diǎn)M,使得△ABM的面積與△ABO的面積相等?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】景觀大道要進(jìn)行綠化改造,已知購買A種樹苗3棵,B種樹苗4棵,需要370元;購買A種樹苗5棵,B種樹苗2棵,需要430元
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)現(xiàn)需購買這兩種樹苗共100棵,要求購買這兩種樹苗的資金不超過5860元,求最多能購買多少棵A種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)對參加2019年中考的300名初中畢業(yè)生進(jìn)行了一次視力抽樣調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖.
請根據(jù)圖表信息回答下列問題:
(1) __________, __________;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若視力在4.9以上(含4.9)均為正常,據(jù)以上信息估計全區(qū)初中畢業(yè)生中視力正常的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);
(2)如果(1)中∠AOB=α,其他條件不變,求∠MON的度數(shù);
(3)如果(1)中∠BOC=β(β為銳角),其他條件不變,求∠MON的度數(shù);
(4)從(1)(2)(3)的結(jié)果中你能看出什么規(guī)律?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的高,E為AC上一點(diǎn),BE交AD于F,且有BF=AC, FD=CD。求證:(1) Rt△BDF≌Rt△ADC (2) BE⊥AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅用110根長短相同的小木棍按照如圖所示的方式,連續(xù)擺正方形或六邊形,要求相鄰的圖形只有一條公共邊.
(1)小紅首先用根小木棍擺出了個小正方形,請你用等式表示之間的關(guān)系: ;
(2)小紅用剩下的小木棍擺出了一些六邊形,且沒有木棍剩余.已知他擺出的正方形比六邊形多4個,請你求出擺放的正方形和六邊形各多少個?
(3)小紅重新用50根小木棍,擺出了排,共個小正方形.其中每排至少含有1個小正方形,每排含有的小正方形的個數(shù)可以不同.請你用等式表示之間的關(guān)系,并寫出所有可能的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖中小方格都是邊長為1的正方形,△ABC與△A′B′C′是關(guān)于點(diǎn)G為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形頂點(diǎn)上.
(1)畫出位似中心點(diǎn)G;
(2)若點(diǎn)A、B在平面直角坐標(biāo)系中的坐標(biāo)分別為(﹣6,0),(-3,2),點(diǎn)P(m,n)是線段AC上任意一點(diǎn),則點(diǎn)P在△A′B′C′上的對應(yīng)點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=的圖象上,過點(diǎn)A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )
A.2 B.4 C.﹣2 D.﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com