已知y與x+1成正比例,且x=3時(shí)y=4.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)y=1時(shí),求x的值.
考點(diǎn):待定系數(shù)法求一次函數(shù)解析式
專(zhuān)題:
分析:(1)根據(jù)正比例函數(shù)的定義可設(shè)設(shè)y=k(x+1),即y=kx+k,然后把x=3時(shí),y=4代入可計(jì)算出k,從而可確定y與x之間的函數(shù)關(guān)系式;
(2)把y=4代入(1)的解析式中解方程得出對(duì)應(yīng)的x值.
解答:解:(1)∵y與x+1成正比例,
∴設(shè)y=k(x+1),
∴y=kx+k,
∵當(dāng)x=3時(shí),y=4,
∴4=3k+k,解得k=1,
∴y與x之間的函數(shù)關(guān)系式為y=x+1;
(2)把y=4代入y=x+1得
4=x+1
解得x=1.
點(diǎn)評(píng):本題考查了待定系數(shù)法求一次函數(shù)解析式:先設(shè)出函數(shù)的一般形式,如求一次函數(shù)的解析式時(shí),先設(shè)y=kx+b;將自變量x的值及與它對(duì)應(yīng)的函數(shù)值y的值代入所設(shè)的解析式,得到關(guān)于待定系數(shù)的方程或方程組;解方程或方程組,求出待定系數(shù)的值,進(jìn)而寫(xiě)出函數(shù)解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算
24
-9
2
3
的結(jié)果是( 。
A、-
6
B、-
6
C、-
4
3
6
D、
4
3
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=-x+n與x軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a≠0)過(guò)C、B兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tan∠CAO=3.點(diǎn)P是線段CB上一點(diǎn)(不和B、C重合),過(guò)點(diǎn)P作x軸的垂線,垂足為H,交拋物線于Q,
(1)求拋物線的解析式.
(2)小明認(rèn)為當(dāng)點(diǎn)Q恰好為拋物線的頂點(diǎn)時(shí),線段PQ的長(zhǎng)最大,你認(rèn)為小明的說(shuō)法正確嗎?如果正確,說(shuō)明理由;如果不正確,試舉出反例說(shuō)明.
(3)若△CPQ是直角三角形,求點(diǎn)P的坐標(biāo).
(4)設(shè)PH和PQ的長(zhǎng)是關(guān)于y的一元二次方程:y2-(m+3)y+
1
4
(5m2-2m+13)=0 (m為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,若MP恰好平分∠QMH,求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC和△EPF都是等腰直角三角形,其中∠ACB=∠EFP=90°,AC=BC,EF=PF.如圖1,△ABC的邊BC在直線l上,△EPF的邊FP也在直線l上,邊AC與邊EF重合.
(1)在圖1中,通過(guò)觀察、測(cè)量,猜想,寫(xiě)出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.
答:AB與AP的數(shù)量關(guān)系和位置關(guān)系分別是
 
、
 
;
(2)將△EPF沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連結(jié)AP,BQ.請(qǐng)你寫(xiě)出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由.
(3)將△EPF 沿直線l向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC 的延長(zhǎng)線于點(diǎn)Q,連結(jié)AP、BQ.你認(rèn)
為(2)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在折成ABCDEF中,已知∠1=∠2=∠3=∠4=∠5,延長(zhǎng)AB、GF交于點(diǎn)M,試探索∠M與∠3的關(guān)系,說(shuō)明理由.
解:∵∠1=∠2,∴
 
 
( 。
∵∠3=∠4,∴CD∥EF
 
 
( 。
∴∠5=
 
( 。
又∵∠3=∠5
∴∠M=∠3(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知
x
+
1
x
=2
2
,求x-
1
x
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩名運(yùn)動(dòng)員進(jìn)行長(zhǎng)跑訓(xùn)練,兩人距離終點(diǎn)的路程y(米)與跑步時(shí)間x(分)之間的關(guān)系如圖所示,根據(jù)圖象回答下列問(wèn)題:
(1)他們?cè)谶M(jìn)行
 
米的長(zhǎng)跑訓(xùn)練,在0<x<15的時(shí)間段內(nèi),速度較快的人是
 
;
(2)求甲的速度;
(3)當(dāng)x=15時(shí),兩人相距多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,如果“炮”所在的位置的坐標(biāo)為(-3,1),
(1)建立直角坐標(biāo)系,使得“炮”所在的位置的坐標(biāo)為(-3,1)(注意:原點(diǎn)在哪里,橫軸在哪里)
(2)寫(xiě)出“相”所在的位置坐標(biāo)為
 

(3)寫(xiě)出“帥”所在的位置坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)
16
+
3-27
+3
3
-
(-3)2
;
(2)|1-
2
|+|
2
-
3
|+|
2
-1|;
(3)(x-1)2=4;                         
(4)3x3=-81.

查看答案和解析>>

同步練習(xí)冊(cè)答案