如圖,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,則∠A的度數(shù)為


  1. A.
    110°
  2. B.
    100°
  3. C.
    80°
  4. D.
    60°
B
分析:由已知∠BDC=120°,得到∠C+∠DBC=3∠DBC=60°,求得∠DBC的度數(shù),根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和可求解.
解答:∵AB=AC
∴∠C=∠ABC
∵BD平分∠ABC
∴∠ABD=∠DBC=∠ABC=∠C,
∴∠ADB=∠C+∠DBC=3∠DBC=60°
∴∠DBC=∠ABD=20°
∴∠A=180°-20°-60°=100°.
故選B.
點(diǎn)評(píng):主要考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和外角之間的關(guān)系.(1)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和;(2)三角形的內(nèi)角和是180°.求角的度數(shù)常常要用到“三角形的內(nèi)角和是180°”這一隱含的條件.根據(jù)已知求得∠DBC的度數(shù)是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案