【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動,同時點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動,設(shè)運(yùn)動時間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時,求證:△ADE≌△CDF;
(2)填空:當(dāng)t為_________s時,四邊形ACFE是菱形;
【答案】(1)證明見解析(2)①6②1.5
【解析】試題分析:(1)由題意得到AD=CD,再由AG與BC平行,利用兩直線平行內(nèi)錯角相等得到兩對角相等,利用AAS即可得證;
(2)①若四邊形ACFE是菱形,則有CF=AC=AE=6,由E的速度求出E運(yùn)動的時間即可;
②分兩種情況考慮:若CE⊥AG,此時四點(diǎn)構(gòu)成三角形,不是直角梯形;若AF⊥BC,求出BF的長度及時間t的值.
(1)證明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D為AC的中點(diǎn),
∴AD=CD,
∵在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS);
(2)解:①若四邊形ACFE是菱形,則有CF=AC=AE=6,
則此時的時間t=6÷1=6(s);
②四邊形AFCE為直角梯形時,
(I)若CE⊥AG,則AE=3,BF=3×2=6,即點(diǎn)F與點(diǎn)C重合,不是直角梯形.
(II)若AF⊥BC,
∵△ABC為等邊三角形,
∴F為BC中點(diǎn),即BF=3,
∴此時的時間為3÷2=1.5(s);
故答案為:6;1.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(-2,y1),(-4,y,2)在函數(shù)y=x2-4x+7的圖象上,那么y1,y2的大小關(guān)系是( )
A. y1>y2 B. y1= y2 C. y1<y2 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市在一次扶貧助殘活動中,共捐款5280000元,將5280000用科學(xué)記數(shù)法表示為( )
A. 5.28×106 B. 5.28×107
C. 52.8×106 D. 0.528×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,D是BC上任意一點(diǎn),BE⊥AD,交AD的延長線于點(diǎn)E,CF⊥AD,垂足為F.
求證:∠1=∠2.
證明:∵ BE⊥AD(已知),
∴ ∠BED= °( ).
又∵ CF⊥AD(已知),
∴ ∠CFD= °.
∴ ∠BED=∠CFD(等量代換).
∴ BE∥CF( ).
∴ ∠1=∠2( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(8×106)(5×102)(2×10)=M×10a , 則M , a的值為( )
A.M=8,a=8
B.M=2,a=9
C.M=8,a=10
D.M=5,a=10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P位于x軸上方,到x軸的距離為2,到y軸的距離為5,則點(diǎn)P坐標(biāo)為( )
A. (2,5)B. (5,2)C. (2,5)或(-2,5)D. (5,2)或(-5,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若m是方程x2+x-1=0的根,則2m2+2m+2016的值為( 。
A. 2016 B. 2017 C. 2018 D. 2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富同學(xué)們的課余生活,某學(xué)校舉行“親近大自然”戶外活動,現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是?”的問卷調(diào)查,要求學(xué)生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請解答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該學(xué)校共有3600名學(xué)生,試估計(jì)該校最想去濕地公園的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com