(n為正整數(shù))是________次________項(xiàng)式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、電子跳蚤游戲盤(pán)是如圖所示的△ABC,AB=AC=BC=6.如果跳蚤開(kāi)始時(shí)在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3=BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2009與點(diǎn)P2010之間的距離為
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中正確的有幾個(gè)( 。
(1)“每次摸一個(gè)球,摸到紅球的概率是
1
6
”,就是指按要求摸6次,必有一次摸到的是紅球;
(2)在公式a-p=
1
ap
(a≠0)
中,p為正整數(shù);
(3)在等式(1+x20=1中,當(dāng)x無(wú)論取什么值時(shí)都成立;
(4)概率的大小是指一事件發(fā)生的可能性大小,所以仍然不能確定該事件是否一定發(fā)生,學(xué)習(xí)概率對(duì)實(shí)際生活沒(méi)有幫助.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州)已知:關(guān)于x的二次函數(shù)y=-x2+ax(a>0),點(diǎn)A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個(gè)二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請(qǐng)說(shuō)明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對(duì)于給定的正實(shí)數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)寫(xiě)出一個(gè)只含字母x的二次三項(xiàng)式,要求二次項(xiàng)的系數(shù)是最小的正整數(shù),一次項(xiàng)的系數(shù)和常數(shù)項(xiàng)相等,則這個(gè)二次三項(xiàng)式為
答案不唯一:如x2+2x+2
答案不唯一:如x2+2x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:吉林省長(zhǎng)春外國(guó)語(yǔ)學(xué)校2011-2012學(xué)年八年級(jí)第一次月考數(shù)學(xué)試題 題型:044

我們已經(jīng)知道了一些特殊的勾股數(shù),如三個(gè)連續(xù)整數(shù)中的勾股數(shù):3、4、5;三個(gè)連續(xù)的偶數(shù)中的勾股數(shù)6、8、10;由此發(fā)現(xiàn)勾股數(shù)的正整數(shù)倍仍然是勾股數(shù).

(1)如果ab、c是一組勾股數(shù),即滿足a2+b2=c2,求證:ka、kb、kc(k為正整數(shù))也是一組勾股數(shù).

(2)另外利用一些構(gòu)成勾股數(shù)的公式也可以寫(xiě)出許多勾股數(shù),如

①公式a=m2-n2,b=2mn,c=m2+n2(m、n為整數(shù),mn,m>1)

②世界上第一次給出的勾股數(shù)的公式,被收集在《九章算術(shù)》中a=(m2-n2),b=mn,c=(m2+n2)(mn為正整數(shù),mn)

③公元前427-公元前347,由柏拉圖提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n為整數(shù))

④畢達(dá)哥拉斯學(xué)派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數(shù))

請(qǐng)你在上述的四個(gè)公式中選擇一種加以證明,滿足公式的a、b、c是一組勾股數(shù)

(3)請(qǐng)根據(jù)你在(2)中所選的公式寫(xiě)出一組勾股數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案