【題目】同學(xué)們,在我們進(jìn)入高中以后,將還會(huì)學(xué)到下面三角函數(shù)公式:
sin (α-β)=sinαcosβ-cosαsinβ,
cos (α-β)=cosαcosβ+sinαsinβ
例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=
(1)試仿照例題,求出cos 15°的準(zhǔn)確值;
(2)我們知道,tanα=,試求出tan 15°的準(zhǔn)確值.
【答案】(1)cos 15°=;(2)tan 15°=2-.
【解析】
根據(jù)題目所給公式進(jìn)行解答即可,(1)把15°化為45°-30°直接代入三角函數(shù)公式:cos(α-β)=cosαcosβ+sinαsinβ計(jì)算即可;(2)把tan15°代入tanα=,再把(1)及例題中的數(shù)值代入即可.
(1)cos 15°= cos (45°-30°)=cos45°cos 30°+sin45°sin 30°=×+×=;
(2)tan 15°===2-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(40,0)和(0,30),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線(xiàn)段AO上以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)O運(yùn)動(dòng),同時(shí)直線(xiàn)EF由x軸為起始位置以每秒1個(gè)單位長(zhǎng)度的速度向上平行移動(dòng)(即EF∥x軸),并且分別與y軸、線(xiàn)段AB交于點(diǎn)E,F,連接EP,FP,設(shè)動(dòng)點(diǎn)P與直線(xiàn)EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒.
(1)求t=15秒時(shí),求EF的長(zhǎng)度;
(2)直線(xiàn)EF、點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.
①寫(xiě)出線(xiàn)段CF與DG的數(shù)量關(guān)系;
②寫(xiě)出直線(xiàn)CF與DG所夾銳角的度數(shù).
(2)拓展探究:
如圖②,將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說(shuō)明.
(2)問(wèn)題解決
如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點(diǎn).若點(diǎn)D在直線(xiàn)BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,線(xiàn)段OE的長(zhǎng)的最小值.(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,弦PB與CD交于點(diǎn)F,且FC=FB.
(1)求證:PD∥CB;
(2)若AB=26,EB=8,求CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,航拍無(wú)人機(jī)從A處測(cè)得一幢建筑物頂部B處的仰角為45°、底部C處的俯角為65°,此時(shí)航拍無(wú)人機(jī)A處與該建筑物的水平距離AD為80米.求該建筑物的高度BC(精確到1米).(參考數(shù)據(jù):sin65°=0.91,cos65°=0.42,tan65°=2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作出反比例函數(shù)y=-的圖象,并結(jié)合圖象回答:(1)當(dāng)x=2時(shí),y的值;(2)當(dāng)1<x≤4時(shí),y的取值范圍;(3)當(dāng)1≤y<4時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫州某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件獲利減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.
(1)根據(jù)信息填表
產(chǎn)品種類(lèi) | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(rùn)(元) |
甲 | 15 | ||
乙 |
(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤(rùn)比生產(chǎn)乙產(chǎn)品可獲得的利潤(rùn)多550元,求每件乙產(chǎn)品可獲得的利潤(rùn).
(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤(rùn)W(元)的最大值及相應(yīng)的x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=5,CD=6,∠DCB=60°,等邊△PMN(N為固定點(diǎn))的邊長(zhǎng)為x,邊MN在直線(xiàn)BC上,NC=8.將直角梯形ABCD繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)到①的位置,再繞點(diǎn)D1按逆時(shí)針?lè)较蛐D(zhuǎn)到②的位置,如此旋轉(zhuǎn)下去.
(1)將直角梯形按此方法旋轉(zhuǎn)四次,如果等邊△PMN的邊長(zhǎng)為x≥5+3,求梯形與等邊三角形的重疊部分的面積;
(2)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是,求等邊△PMN的邊長(zhǎng)x的范圍.
(3)將直角梯形按此方法旋轉(zhuǎn)三次,如果梯形與等邊三角形的重疊部分的面積是梯形面積的一半,求等邊△PMN的邊長(zhǎng)x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個(gè)數(shù)字.小明做了60次投擲試驗(yàn),結(jié)果統(tǒng)計(jì)如下:
朝下數(shù)字 | 1 | 2 | 3 | 4 |
出現(xiàn)的次數(shù) | 16 | 20 | 14 | 10 |
(1)計(jì)算上述試驗(yàn)中“4朝下”的頻率是 ;
(2)隨機(jī)投擲正四面體兩次,請(qǐng)用列表或畫(huà)樹(shù)狀圖法,求兩次朝下的數(shù)字之和大于4的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com