【題目】如圖,直線AB、CD相交于點O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度數(shù);
(2)OF是∠AOD的角平分線嗎?為什么?
【答案】(1)∠DOB=64°;(2)OF是∠AOD的角平分線,理由見解析.
【解析】
(1)根據(jù)角平分線的性質可得∠AOC=2∠AOE=64°,再根據(jù)對頂角相等即可求∠DOB的度數(shù).
(2)根據(jù)垂直的定義得∠EOF=90°,再根據(jù)角的和差關系可得∠AOD=2∠AOF,即可得證OF是∠AOD的角平分線.
(1)∵OE平分∠AOC,
∴∠AOC=2∠AOE=64°.
∵∠DOB與∠AOC是對頂角,
∴∠DOB=∠AOC=64°;
(2)∵OE⊥OF,
∴∠EOF=90°,
∴∠AOF=∠EOF﹣∠AOE=58°.
∵∠AOD=180°﹣∠AOC=116°,
∴∠AOD=2∠AOF,
∴OF是∠AOD的角平分線.
科目:初中數(shù)學 來源: 題型:
【題目】兩根木條一根長80cm另一根長60cm,把它們一端重合放在同一直線上,此時兩根木條中點的距離是( 。
A.10cmB.70cm或10cmC.20cmD.20cm或70cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一本小說共頁,一位同學第一天看了全書的少6頁,第二天看了剩下的多6頁,第三天把剩下的全部看完.
①該同學第一天看了多少頁?
②該同學第二天看了多少頁?
③若,則第三天看了多少頁?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3
(1)求證:BN=DN;
(2)求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).
(1)此時小強頭部E點與地面DK相距多少?
(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
(sin80°≈0.98,cos80°≈0.17, ≈1.41,結果精確到0.1cm)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘漁船位于港口A的北偏東60°方向,距離港口20海里的B處,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā),經(jīng)過20分鐘到達C處,求救援船的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,結果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形與正方形(點C、E、F、G按順時針排列),是的中點,連接,.
(1)如圖1,點在上,點在的延長線上,
求證:=ME,⊥.ME
簡析: 由是的中點,AD∥EF,不妨延長EM交AD于點N,從而構造出一對全等的三角形,即 ≌ .由全等三角形性質,易證△DNE是 三角形,進而得出結論.
(2)如圖2, 在的延長線上,點在上,(1)中結論是否成立?若成立,請證明你的結論;若不成立,請說明理由.
(3)當AB=5,CE=3時,正方形的頂點C、E、F、G按順時針排列.若點在直線CD上,則DM= ;若點E在直線BC上,則DM= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于點F,且∠FBD=∠D.
求證:AC∥BD.
證明:∵∠ABE=∠CBD(已知),
∴∠ABE+∠EBC=∠CBD+∠EBC( )
即∠ABC=∠EBD
在△ABC和△EBD中,
,
∴△ABC≌△EBD( ),
∴∠C=∠D( )
∵∠FBD=∠D,
∴∠C= (等量代換),
∴AC∥BD( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com