如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱為這個(gè)平面圖形的一條面積等分線.如:平行四邊形的一條對(duì)線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的有___;
(2)如圖1,梯形ABCD中,AB∥DC,如果延長(zhǎng)DC到E,使CE=AB,連接AE,那么有S梯形ABCD=S△ADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過點(diǎn)A作出梯形ABCD的面積等分線(不寫作法,保留作圖痕跡);
(3)如圖,四邊形ABCD中,AB與CD不平行,S△ADC>S△ABC,過點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫出面積等分線,并給出證明;若不能,說明理由.
(1)略
(2)略
(3)能
【解析】(1)中線所在的直線.
(2)法一:連接BE,∵AB∥CE,AB=CE,∴四邊形ABEC為平行四邊形.∴BE∥AC,
∴△ABC和△AEC的公共邊AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
法二:設(shè)AE與BC相交于點(diǎn)F.∵AB∥CE,∴∠ABF=∠ECF,∠BAF=∠CEF.
又∵AB=CE,∴△ABF≌△ECF.∴S梯形ABCD=S四邊形AFCD+S△ABF=S四邊形AFCD+S△ECF=S△AED .
過點(diǎn)A的梯形ABCD的面積等分線的畫法如圖①所示.
(3)能.連接AC,過點(diǎn)B作BE∥AC交DC的延長(zhǎng)線于點(diǎn)E,連接AE.
∵BE∥AC,∴△ABC和△AEC的公共邊AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
∵S△ACD>S△ABC ,∴面積等分線必與CD相交,取DE中點(diǎn)F,則直線AF即為要求作的四邊形ABCD的面積等分線.作圖如圖②所示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年山東省青島市中考數(shù)學(xué)模擬試卷(四)(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2007年江蘇省泰州市泰興市橫垛初中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com