①③⑤
分析:根據(jù)∠ACB=90°,BF⊥AE,得出∠ACB=∠BED=∠BCF=90°,推出∠F=∠ADC,證△BCF≌△ACD,根據(jù)全等三角形的性質即可判斷①②;假如AC+CD=AB,求出∠F+∠FBC≠90°,和已知矛盾,即可判斷③④,證根據(jù)全等三角形的判定ASA得出△BEA≌△FEA,推出BE=EF,即可判斷⑤.
解答:∵∠ACB=90°,BF⊥AE,
∴∠ACB=∠BED=∠BCF=90°,
∴∠F+∠FBC=90°,∠BDE+∠FBC=90°,
∴∠F=∠BDE,
∵∠BDE=∠ADC,
∴∠F=∠ADC,
∵AC=BC,
∴△BCF≌△ACD,
∴AD=BF,∴①正確;②錯誤;
∵△BCF≌△ACD,
∴CD=CF,
∴AC+CD=AF,
假如AC+CD=AB,
∴AB=AF,∴∠F=∠FBA=65°,
∴∠FBC=65°-45°=20°,
∴∠F+∠FBC≠90°,∴③錯誤;④錯誤;
由△BCF≌△ACD,
∴AD=BF,
∵AE平分∠BAF,AE⊥BF,
∴∠BEA=∠FEA=90°,∠BAE=∠FAE,
∵AE=AE,∴△BEA≌△FEA,
∴BE=EF,
∴⑤正確;
故答案為:①③⑤.
點評:本題主要考查對三角形的內(nèi)角和定理,全等三角形的性質和判定,角平分線的定義,垂線,等腰三角形的性質和判定等知識點的理解和掌握,綜合運用這些性質進行證明是證此題的關鍵.