【題目】如圖所示,△ABC和△DCB有公共邊BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分別為E、F,AE=DF,那么求證AC=BD時(shí),需要證明三角形全等的是Rt△ABE≌Rt△DCF,△AEC≌DFB.說(shuō)明理由.
【答案】見(jiàn)解析
【解析】
需先根據(jù)HL判定Rt△ABE≌Rt△DCF,從而得出BE=CF,則推出EC=BF,再根據(jù)SAS判定△AEC≌△DFB,而求出AC=BD.
∵AE⊥BC,DF⊥BC,垂足分別為E、F,∴∠AEB=∠AEC=∠DFB=∠DFC=90°,
∵AB=DC,AE=DF,∴Rt△ABE≌Rt△DCF(HL),∴BE=CF,∴EC=BF,
∵AE=DF,∠AEC=∠DFB,∴△AEC≌△DFB(SAS).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在四邊形中,∠A=∠C=90°.
(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補(bǔ)角,請(qǐng)寫(xiě)出BE與DF的位置關(guān)系,并證明.
(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DE與BF位置關(guān)系并證明.
(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補(bǔ)角(即∠CDE=,∠CBE=),則∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是經(jīng)過(guò)∠BCA的頂點(diǎn)C的一條直線(xiàn),CA=CB,E,F(xiàn)是直線(xiàn)CD上的兩點(diǎn),且∠BEC=∠CFA=α.
(1)若直線(xiàn)CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線(xiàn)CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(填“>”“<”或“=”);
②如圖(b),若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于α與∠BCA關(guān)系的條件________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立;
(2)如圖(c),若直線(xiàn)CD經(jīng)過(guò)∠BCA的外部,∠BCA=α,請(qǐng)寫(xiě)出EF,BE,AF三條線(xiàn)段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為直線(xiàn)AD上一點(diǎn),∠AOC與∠AOB互補(bǔ),OM、ON分別是∠AOC、∠AOB的平分線(xiàn),∠MON=56°.
⑴ ∠COD與∠AOB相等嗎?請(qǐng)說(shuō)明理由;
⑵ 求∠BOC的度數(shù);
⑶ 求∠AOB與∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)數(shù)形圖的生長(zhǎng)過(guò)程,自上而下一個(gè)空心圓生成一個(gè)實(shí)心圓,一個(gè)實(shí)心圓生成一個(gè)實(shí)心圓和一個(gè)空心圓,依此生長(zhǎng)規(guī)律,第9行的實(shí)心圓的個(gè)數(shù)是( )
A. 13 B. 21
C. 27 D. 29
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決有關(guān)問(wèn)題:
我們知道,,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的式子,例如化簡(jiǎn)式子時(shí),可令和,分別求得,(稱(chēng)、分別為與的零點(diǎn)值)。在有理數(shù)范圍內(nèi),零點(diǎn)值和可將全體有理數(shù)不重復(fù)且不遺漏地分成如下三種情況:(1);(2)≤;(3)≥2。從而化簡(jiǎn)代數(shù)式可分為以下3種情況:
(1)當(dāng)時(shí),原式;
(2)當(dāng)≤時(shí),原式;
(3)當(dāng)≥2時(shí),原式
綜上所述:原式
通過(guò)以上閱讀,請(qǐng)你類(lèi)比解決以下問(wèn)題:
(1)填空:與的零點(diǎn)值分別為 ;
(2)化簡(jiǎn)式子。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過(guò)A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線(xiàn)段EO于點(diǎn)F,若AB=BF.
(1)求證:AB是⊙O的切線(xiàn);
(2)若CF=4,DF= ,求⊙O的半徑r及sinB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:求若干個(gè)相同的有理數(shù)(均不等于 0)的除法運(yùn)算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,類(lèi)比有理數(shù)的乘方,我們把記作 2÷2÷2,2②,讀作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作:“(﹣3)的圈 4 次方”.一般地,把個(gè)記作 a,讀作 “a 的圈 n次方”
(初步探究)
(1)直接寫(xiě)出計(jì)算結(jié)果:2②,(﹣)②.
(深入思考)
我們知道,有理數(shù)的減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,除法運(yùn)算可以轉(zhuǎn)化為乘法運(yùn)算,有理數(shù)的除方運(yùn)算如何轉(zhuǎn)化為乘方運(yùn)算呢?
(2)試一試,仿照上面的算式,將下列運(yùn)算結(jié)果直接寫(xiě)成冪的形式.
5⑥;(﹣)⑩.
(3)想一想:有理數(shù) a(a≠0)的圈n(n≥3)次方寫(xiě)成冪的形式等于多少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com