在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,-1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應(yīng)點).
(1)若M(-2,5),請直接寫出N點坐標(biāo).
(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應(yīng)的函數(shù)解析式.
(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負(fù)半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

【答案】分析:(1)首先根據(jù)點M的移動方向和單位得到點N的平移方向和單位,然后按照平移方向和單位進(jìn)行移動即可;
(2)將點N的坐標(biāo)代入函數(shù)的解析式即可求得k值;
(3)配方后確定點B、A、E的坐標(biāo),根據(jù)CO:OF=2:用m表示出線段CO、FO和BF的長,利用S△BEC=S△EBF+S△BFC=得到有關(guān)m的方程求得m的值即可;
(4)分當(dāng)∠BPE>∠APE時、當(dāng)∠BPE=∠APE時、當(dāng)∠BPE<∠APE時三種情況分類討論即可.
解答:解:(1)由于圖形平移過程中,對應(yīng)點的平移規(guī)律相同,
由點M到點M′可知,點的橫坐標(biāo)減5,縱坐標(biāo)加3,
故點N′的坐標(biāo)為(5-5,-1+3),即(0,2).
N(0,2);

(2)∵N(0,2)在拋物線y=x2+x+k上
∴k=2
∴拋物線的解析式為y=x2+x+2     

(3)∵y=x2+x+2=(x+22
∴B(-2,0)、A(0,2)、E(-,1)
∵CO:OF=2:
∴CO=-m,F(xiàn)O=-m,BF=2+m
∵S△BEC=S△EBF+S△BFC=
(2+m)(-m+1)=
整理得:m2+m=0
∴m=-1或0                        
∵m<0
∴m=-1                   

(4)在Rt△ABO中,tan∠ABO===
∴∠ABO=30°,AB=2AO=4
①當(dāng)∠BPE>∠APE時,連接A1B則對折后如圖2,A1為對折后A的所落點,△EHP是重疊部分.
∵E為AB中點,∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP
=S△EHP=S△BHP=S△ABP
∴A1H=HP,EH=HB=1
∴四邊形A1BPE為平行四邊形
∴BP=A1E=AE=2
即BP=2                                                     
②當(dāng)∠BPE=∠APE時,重疊部分面積為△ABP面積的一半,不符合題意;
③當(dāng)∠BPE<∠APE時.
則對折后如圖3,A1為對折后A的所落點.△EHP是重疊部分
∵E為AB中點,
∴S△AEP=S△BEP=S△ABP
∵S△EHP=S△ABP∴S△EBH=S△EHP==S△ABP
∴BH=HP,EH=HA1=1
又∵BE=EA=2
∴EHAP,
∴AP=2
在△APB中,∠ABP=30°,AB=4,AP=2.
∴∠APB=90°,
∴BP=
綜合①②③知:BP=2或;
點評:此題主要考查了點的平移、二次函數(shù)解析式的確定,圖形折疊問題及圖形面積等重要知識點,同時還考查了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標(biāo)原點.A、B兩點的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案