【題目】如圖,在RtABC中,C=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將PQC沿BC翻折,點P的對應點為點P.設點Q運動的時間為t秒,若四邊形QPCP為菱形,則t的值為( )

A. B.2 C.2 D.3

【答案】B.

【解析】

試題分析:首先連接PP交BC于O,根據(jù)菱形的性質(zhì)可得PP′⊥CQ,可證出POAC,根據(jù)平行線分線段成比例可得,再表示出AP、AB、CO的長,代入比例式可以算出t的值.

試題解析:連接PP交BC于O,

若四邊形QPCP為菱形,

PP′⊥QC,

∴∠POQ=90°

∵∠ACB=90°,

POAC,

設點Q運動的時間為t秒,

AP=t,QB=t,

QC=6-t,

CO=3-

AC=CB=6,ACB=90°,

AB=6,

解得:t=2,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CN是等邊的外角內(nèi)部的一條射線,點A關于CN的對稱點為D,連接AD,BDCD,其中AD,BD分別交射線CN于點EP

(1)依題意補全圖形;

2)若,求的大。ㄓ煤的式子表示);

3)用等式表示線段, 之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(齊齊哈爾中考)如圖所示,在四邊形ABCD.

(1)畫出四邊形A1B1C1D1,使四邊形A1B1C1D1與四邊形ABCD關于直線MN成軸對稱;

(2)畫出四邊形A2B2C2D2,使四邊形A2B2C2D2與四邊形ABCD關于點O中心對稱.

(3)四邊形A1B1C1D1與四邊形A2B2C2D2是否對稱,若對稱請在圖中畫出對稱軸或?qū)ΨQ中心.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B在反比例函數(shù)y=的圖象上,過點A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )

A.2 B.4 C.﹣2 D.﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,(1)已知∠ABC,射線EDAB,過點E作∠DEF=∠ABC,試說明BCEF;

(2)如圖②,已知∠ABC,射線EDAB,∠ABC+∠DEF=180°.判斷直線BC與直線EF的位置關系,并說明理由;

(3)根據(jù)以上探究,你發(fā)現(xiàn)了一個什么結(jié)論?請你寫出來;

(4)如圖③,已知ACBCCDAB,DEAC,HFAB,若∠1=48°,試求∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】推理填空:如圖,已知∠BCGFDGFF,求證∠BF180°.

證明:∵∠B= (已知),

ABC( ),

∵∠DGF= (已知),

CDEF( ),

AB ( )

∴∠B+ =180°( ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表所示為裝運、銷售甲、乙、丙三種蔬菜的重量及利潤。某公司計劃用20輛汽車裝運甲、乙、丙三種蔬菜共36噸到某地銷售.規(guī)定每輛汽車滿載,每車只裝一種蔬菜,每種蔬菜不少于一車。應如何安排,可使公司獲得利潤18300?

每輛汽車裝運的噸數(shù)

2

1

1.5

每噸蔬菜可獲利潤(百元)

5

7

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC水平向右平移4個單位得到△A′B′C′

(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;

(2)圖中ACA1C1的關系是:______;

(3)畫出△ABCAB邊上的中線CE;

(4)平移過程中,線段AC掃過的面積是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點A是雙曲線y與直線y=-x(k+1)在第二象限的交點.ABx軸于B,且SABO

(1)求這兩個函數(shù)的解析式;

(2)求直線與雙曲線的兩個交點AC的坐標和AOC的面積.

查看答案和解析>>

同步練習冊答案