如圖,梯形ABCD中,ADBC,BC=3AD,M、N為底邊BC的三等分點(diǎn),連接AM,DN.
(1)求證:四邊形AMND是平行四邊形;
(2)連接BD、AC,AM與對(duì)角線BD交于點(diǎn)G,DN與對(duì)角線AC交于點(diǎn)H,且AC⊥BD.試判斷四邊形AGHD的形狀,并證明你的結(jié)論.
精英家教網(wǎng)
(1)證明:∵BC=3AD,BC=3MN,
∴AD=MN,
∵ADBC,
∴四邊形AMND是平行四邊形.

(2)四邊形AGHD是菱形.
∵ADBC,
∴∠ADG=∠MBG,
∵∠BGM=∠DGA,AD=BM,
∴△BGM≌△DGA(AAS),
∴AG=GM.
同理可得AH=HC,
∴GH是△AMC的中位線,
∴GHBC,GH=
1
2
MC=MN
,
∴GHAD,GH=AD,
∴四邊形AGHD是平行四邊形,
∵AC⊥BD,
∴四邊形AGHD是菱形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長;
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊答案