精英家教網 > 初中數學 > 題目詳情
(2009•樂山)下列命題中,假命題是( )
A.兩點之間,線段最短
B.角平分線上的點到這個角的兩邊的距離相等
C.兩組對邊分別平行的四邊形是平行四邊形
D.對角線相等的四邊形是矩形
【答案】分析:根據關于線段的公理、角平分線的性質、平行四邊形的判定、矩形的判定即可求解.
解答:解:A是真命題;
B是真命題;
C是真命題;
D是假命題,例如等腰梯形;
故選D.
點評:解答此題的關鍵是要熟知真命題與假命題的概念.
真命題:判斷正確的命題叫真命題;
假命題:判斷錯誤的命題叫假命題.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應的二次函數解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數學 來源:2010年中考數學考前30天沖刺得分專練8:二次函數(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應的二次函數解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數學 來源:2010年浙江省寧波市南三縣初中畢業(yè)生學業(yè)診斷性考試數學試卷(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應的二次函數解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

科目:初中數學 來源:2009年四川省樂山市中考數學試卷(解析版) 題型:解答題

(2009•樂山)如圖,在平面直角坐標系中,開口向上的拋物線與x軸交于A、B兩點,D為拋物線的頂點,O為坐標原點.若OA、OB(OA<OB)的長分別是方程x2-4x+3=0的兩根,且∠DAB=45°.
(1)求拋物線對應的二次函數解析式;
(2)過點A作AC⊥AD交拋物線于點C,求點C的坐標;
(3)在(2)的條件下,過點A任作直線l交線段CD于點P,若點C、D到直線l的距離分別記為d1、d2,試求的d1+d2的最大值.

查看答案和解析>>

同步練習冊答案