滿足方程的根為正數(shù)的k的取值范圍是

[  ]

A.k<2

B.k≠-3

C.-3<k<2

D.k<2且k≠-3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程
14
x2-(m-2)x+m2=0

(1)若方程有兩個相等的實數(shù)根,求m的值,并求出方程的根;
(2)設(shè)方程的兩根為x1,x2.是否存在正數(shù)m,使得x12+x22=224?若存在請求出滿足條件的m的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)形結(jié)合作為一種數(shù)學(xué)思想方法,數(shù)形結(jié)合的應(yīng)用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即“以形助數(shù)”.
如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=90°,CD⊥AB,D為垂足.易證得兩個結(jié)論:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D為垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長.
(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解:設(shè)a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大.求證:a+d>b+c(提示:不訪設(shè)AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•思明區(qū)一模)如果一元二次方程ax2+bx+c=0的兩根x1、x2均為正數(shù),且滿足1<
x1
x2
<2
(其中x1>x2),那么稱這個方程有“鄰近根”.
(1)判斷方程x2-(
3
+1)x+
3
=0
是否有“鄰近根”,并說明理由;
(2)已知關(guān)于x的一元二次方程mx2-(m-1)x-1=0有“鄰近根”,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的一元二次方程x2+bx+c=0,則b、c滿足下列哪個條件時,方程一定有兩個不相等的實數(shù)根,這個條件是(  )

查看答案和解析>>

同步練習(xí)冊答案