【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動,其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動,速度為每秒1個單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動.設(shè)P從出發(fā)起運(yùn)動了t秒.
(1)如果點(diǎn)Q的速度為每秒2個單位,①試分別寫出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時(shí),PQ∥OC?
(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過的路程和它的速度;
②試問:這時(shí)直線PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.
【答案】(1)①點(diǎn)Q在OC上時(shí)Q(t,t),點(diǎn)Q在CB上時(shí)Q(2t﹣1,3);②t=5;(2)①v=,點(diǎn)Q所經(jīng)過的路程為(16﹣t);②直線PQ不可能同時(shí)把梯形OABC的面積也分成相等的兩部分.
【解析】
試題分析:(1)①根據(jù)相似三角形的性質(zhì)即可求得點(diǎn)Q在OC上時(shí)的坐標(biāo);根據(jù)路程即可求得點(diǎn)Q在CB上時(shí)的橫坐標(biāo)是(2t﹣5),縱坐標(biāo)和點(diǎn)C的縱坐標(biāo)一致,是3;
②顯然此時(shí)Q在CB上,由平行四邊形的知識可得,只需根據(jù)OP=CQ列方程求解;
(2)①設(shè)Q的速度為v,根據(jù)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,即可建立函數(shù)關(guān)系式;
②顯然Q應(yīng)在CB上,根據(jù)面積和①中的結(jié)論得到關(guān)于t的方程,進(jìn)行求解.
試題解析:(1)①點(diǎn)Q在OC上時(shí)Q(t,t),點(diǎn)Q在CB上時(shí)Q(2t﹣1,3).
②顯然Q在CB上,由平行四邊形的知識可得,只須OP=CQ.所以2t﹣5=t得t=5.
(2)①設(shè)Q的速度為v,先求梯形的周長為32,可得t+vt=16,所以v=,點(diǎn)Q所經(jīng)過的路程為(16﹣t);
②當(dāng)Q在OC上時(shí),做QM⊥OA,垂足為M,則QM=(16﹣t)×,∴S△OPQ=×(16﹣t)t=t(16﹣t)=S梯形OABC,則令t(16﹣t)=18,解得t1=10,t2=6,當(dāng)t1=10時(shí),16﹣x=6,此時(shí)點(diǎn)Q不在OC上,舍去;當(dāng)t2=6時(shí),16﹣x=10,此時(shí)點(diǎn)Q也不在OC上,舍去;∴當(dāng)Q點(diǎn)在OC上時(shí),PQ不可能同時(shí)把梯形OABC的面積也分成相等的兩部分.
當(dāng)Q點(diǎn)在CB上時(shí),CQ=16﹣t﹣5=11﹣x,∴S梯形OPQC=×(11﹣x+x)×3=≠18,∴當(dāng)Q點(diǎn)在CB上時(shí),PQ不可能同時(shí)把梯形OABC的面積也分成相等的兩部分.
綜上所述,直線PQ不可能同時(shí)把梯形OABC的面積也分成相等的兩部分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)測算,我國每年因沙漠造成的直接經(jīng)濟(jì)損失超過5 400 000萬元,這個數(shù)用科學(xué)記數(shù)法表示為萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,點(diǎn)A在第一象限,點(diǎn)B在x軸的正半軸上,△AOB為正三角形,射線OC⊥AB,在OC上依次截取點(diǎn)P1,P2,P3,…,Pn,使OP1=1,P1P2=3,P2P3=5,…,Pn﹣1Pn=2n﹣1(n為正整數(shù)),分別過點(diǎn)P1,P2,P3,…,Pn向射線OA作垂線段,垂足分別為點(diǎn)Q1,Q2,Q3,…,Qn,則點(diǎn)Qn的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對應(yīng)值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
則該函數(shù)圖象的對稱軸是( )
A.直線x=﹣3
B.直線x=﹣2
C.直線x=﹣1
D.直線x=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD于正方形A1B1C1D1關(guān)于某點(diǎn)中心對稱,已知A,D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)求對稱中心的坐標(biāo);
(2)寫出頂點(diǎn)B,C,B1,C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點(diǎn),連接AD并延長交OC于E.
(1)求點(diǎn)B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點(diǎn)C與點(diǎn)A重合,折痕為FG,求OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.﹣5是﹣25的平方根
B.3是(﹣3)2的算術(shù)平方根
C.(﹣2)2的平方根是2
D.8的平方根是±4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵居民節(jié)約用水,決定實(shí)行兩級收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com