如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動(dòng),直到點(diǎn)P到達(dá)點(diǎn)D后才停止.已知△PAD的面積S(單位:cm2)與點(diǎn)P移動(dòng)的時(shí)間(單位:s)的函數(shù)如圖②所示,則下列結(jié)論:①AB=BC=2cm;②cos∠CDA=;③梯形ABCD的面積為 cm2;④點(diǎn)P從開始移動(dòng)到停止移動(dòng)一共用了()秒;其中正確的結(jié)論是( )。
(第10題)
A.①② B.①③ C.①③④ D.①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如右圖一只封閉的圓柱形水桶(桶的厚度忽略不計(jì)),底面直徑為20cm,母線長(zhǎng)為40cm,盛了半桶水,現(xiàn)將該水桶水平放置后如圖所示,則水所形成的幾何體的表面積為( )
A.800 cm2 B. (800+400π) cm2
C.(800+500π)cm2 D.(1600+1200π)cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若實(shí)數(shù)a、b滿足a+b=5,a2b+ab2=-10,則ab的值是( )
A.-2 B.2 C.-50 D.50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為迎接中國(guó)森博會(huì),某商家計(jì)劃從廠家采購(gòu)A,B兩種產(chǎn)品共20件,產(chǎn)品的采購(gòu)單價(jià)(元/件)是采購(gòu)數(shù)量(件)的一次函數(shù).下表提供了部分采購(gòu)數(shù)據(jù).
(1)設(shè)A產(chǎn)品的采購(gòu)數(shù)量為x(件),采購(gòu)單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購(gòu)A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購(gòu)單價(jià)不低于1200元.求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完.在(2)的條件下,求采購(gòu)A種產(chǎn)品多少件時(shí)總利潤(rùn)最大,并求最大利潤(rùn).
采購(gòu)數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直角三角形紙片ABC的∠C為90°,將三角形紙片沿著圖示的中位線DE剪開,然后把剪開的兩部分重新拼接成不重疊的圖形,下列選項(xiàng)中不能拼出的圖形是( 。
A.直角梯形 B.矩形 C.等腰梯形 D.平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
平面內(nèi)有四個(gè)不同的點(diǎn)A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,則滿足題意的OC長(zhǎng)度的取值范圍是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知梯形ABCD, AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,問(wèn)題:
(1)如圖1,P為AB邊上一點(diǎn),以PD、PC為邊做平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ,DC的長(zhǎng)能否相等,為什么?
(2)如圖2,P為AB邊上任意一點(diǎn),以PD、PC為邊做平行四邊形PCQD,請(qǐng)問(wèn)對(duì)角線PQ的長(zhǎng)是否存在最小值?若果存在,請(qǐng)求出最小值;如果不存在,請(qǐng)說(shuō)明理由。
(3)P為AB邊上任意一點(diǎn),延長(zhǎng)PD到E,使DE=PD,以PE、PC為邊做平行四邊形PCQE,請(qǐng)?zhí)骄繉?duì)角線PQ的長(zhǎng)是否也存在最小值?若果存在,請(qǐng)求出最小值;如果不存在,請(qǐng)說(shuō)明理由。
(圖1) (圖2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖:直線與x,y軸分別交于A,B,C是AB的中點(diǎn),點(diǎn)P從A出發(fā)以每秒1個(gè)單位的速度沿射線AO方向運(yùn)動(dòng),將點(diǎn)C繞P順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D,作DE⊥x軸,垂足為E,連接PC,PD,PB.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤16),當(dāng)以P,D,E為頂點(diǎn)的三角形與△BOP相似時(shí),寫出所有t的值:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com