【題目】如圖四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過點D作DF⊥AC,垂足為F.DF與AB相交于E.設AB=15,BC=9,P是射線DF上的動點.當△BCP的周長最小時,DP的長為 .
【答案】12.5
【解析】解:∵∠ACB=90°,AB=15,BC=9,
∴AC= = =12,
∵AD=DC,DF⊥AC,
∴AF=CF= AC=6,
∴點C關于DE的對稱點是A,故E點與P點重合時△BCP的周長最小,
∴DP=DE,
∵DE⊥AC,BC⊥AC,
∴DE∥BC,
∴△AEF∽△ABC,
∴ ,即 = ,解得AE= ,
∵DE∥BC,
∴∠AED=∠ABC,
∵∠DAB=∠ACB=90°,
∴Rt△AED∽Rt△CBA,
∴ = ,即 = ,解得DE=12.5,即DP=12.5.
故答案為:12.5.
先根據(jù)△ABC是直角三角形可求出AC的長,再根據(jù)AD=DC,DF⊥AC可求出AF=CF= AC,故點C關于DE的對稱點是A,故E點與P點重合時△BCP的周長最小,再根據(jù)DE⊥AC,BC⊥AC可知,DE∥BC,由相似三角形的判定定理可知△AEF∽△ABC,利用相似三角形的對應邊成比例可得出AE的長,同理,利用△AED∽△CBA即可求出DE的長.
科目:初中數(shù)學 來源: 題型:
【題目】課外興趣小組活動時,老師提出了如下問題: 如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
小明在組內經過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,再連接BE,(或將△ACD繞點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關系可得2<AE<8,則1<AD<4.
[感悟]解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結論集中到同一個三角形中.
(1)解決問題:受到(1)的啟發(fā),請你證明下列命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF. ①求證:BE+CF>EF;
②若∠A=90°,探索線段BE、CF、EF之間的等量關系,并加以證明
(2)問題拓展:如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°的角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D,E分別在AB,AC上,且CD與BE相交于點F,已知△BDF的面積為6,△BCF的面積為9,△CEF的面積為6,則四邊形ADFE的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線y= x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=﹣ ,且經過A,C兩點,與x軸的另一個交點為點B.
(1)求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求四邊形PAOC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△AOC相似?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O在∠APB的平分線上,⊙O與PA相切于點C.
(1)求證:直線PB與⊙O相切;
(2)PO的延長線與⊙O交于點E.若⊙O的半徑為3,PC=4.求弦CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°, ]得到△AB′C′,則S△AB'C:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】廣安某網站調查,2016年網民們最關注的熱點話題分別有:消費、教育、環(huán)保、反腐及其它共五類.根據(jù)調查的部分相關數(shù)據(jù),繪制的統(tǒng)計圖表如下:
根據(jù)以上信息解答下列問題:
(1)請補全條形統(tǒng)計圖并在圖中標明相應數(shù)據(jù);
(2)若廣安市約有900萬人口,請你估計最關注環(huán)保問題的人數(shù)約為多少萬人?
(3)在這次調查中,某單位共有甲、乙、丙、丁四人最關注教育問題,現(xiàn)準備從這四人中隨機抽取兩人進行座談,則抽取的兩人恰好是甲和乙的概率是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個交點為A(4,0),與y軸交于點B.
(1)求此二次函數(shù)關系式和點B的坐標;
(2)在x軸的正半軸上是否存在點P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com