【題目】如圖,四邊形OBCD中的三個頂點(diǎn)在⊙O上,點(diǎn)A是優(yōu)弧BD上的一個動點(diǎn)(不與點(diǎn)B、D重合).
(1)當(dāng)圓心O在∠BAD內(nèi)部,∠ABO+∠ADO=60°時(shí),∠BOD= ;
(2)當(dāng)圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時(shí),求∠A的度數(shù);
(3)當(dāng)圓心O在∠BAD外部,四邊形OBCD為平行四邊形時(shí),請直接寫出∠ABO與∠ADO的數(shù)量關(guān)系.
【答案】(1)120 °;(2)60°;(3)60°.
【解析】試題分析:(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=60°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=120°;(2)根據(jù)平行四邊形的性質(zhì)得∠BOD=∠BCD,再根據(jù)圓周角定理得∠BOD=2∠A,則∠BCD=2∠A,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)由∠BCD+∠A=180°,易計(jì)算出∠A的度數(shù);(3)討論:當(dāng)∠OAB比∠ODA小時(shí),如圖2,與(1)一樣∠OAB=∠ABO,∠OAD=∠ADO,則∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,由(2)得∠BAD=60°,
所以∠ADO﹣∠ABO=60°;當(dāng)∠OAB比∠ODA大時(shí),用樣方法得到∠ABO﹣∠ADO=60°.
試題解析:(1)連接OA,如圖1,
∵OA=OB,OA=OD, ∵∠OAB=∠ABO,∠OAD=∠ADO, ∴∠OAB+∠OAD=∠ABO+∠ADO=60°,即∠BAD=60°,
∴∠BOD=2∠BAD=120°;
(2)∵四邊形OBCD為平行四邊形, ∴∠BOD=∠BCD, ∵∠BOD=2∠A, ∴∠BCD=2∠A,
∵∠BCD+∠A=180°,即3∠A=180°, ∴∠A=60°;
(3)當(dāng)∠OAB比∠ODA小時(shí),如圖2,
∵OA=OB,OA=OD, ∵∠OAB=∠ABO,∠OAD=∠ADO, ∴∠OAD﹣∠OAB=∠ADO﹣∠ABO=∠BAD,
由(2)得∠BAD=60°, ∴∠ADO﹣∠ABO=60°; 當(dāng)∠OAB比∠ODA大時(shí),
同理可得∠ABO﹣∠ADO=60°, 綜上所述,|∠ABO﹣∠ADO|=60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年里約奧運(yùn)會,中國女排的姑娘們在郎平教練指導(dǎo)下,通過刻苦訓(xùn)練,取得了世界冠軍,為國爭光,如圖,已知排球場的長度OD為18米,位于球場中線處球網(wǎng)的高度AB為2.43米,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.8米的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為7米時(shí),到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系.
(1)當(dāng)球上升的最大高度為3.2米時(shí),求排球飛行的高度y(單位:米)與水平距離x(單位:米)的函數(shù)關(guān)系式.(不要求寫自變量x的取值范圍).
(2)在(1)的條件下,對方距球網(wǎng)0.5米的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1米,問這次她是否可以攔網(wǎng)成功?請通過計(jì)算說明.
(3)若隊(duì)員發(fā)球既要過球網(wǎng),又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再因式分解:x4+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2-2x+2)(x2+2x+2),按照這種方法把多項(xiàng)式x4+64因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn) F,過點(diǎn)E作直線EP與CD的延長線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一根新生的蘆葦高出水面1尺,一陣風(fēng)吹過,蘆葦被吹倒一邊,頂端齊至水面,蘆葦移動的水平距離為5尺,求水池的深度和蘆葦?shù)拈L度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解學(xué)生平均每天“誦讀經(jīng)典”的時(shí)間,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(設(shè)每天的誦讀時(shí)間為分鐘),將調(diào)查統(tǒng)計(jì)的結(jié)果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
()請補(bǔ)全上面的條形圖.
()所抽查學(xué)生“誦讀經(jīng)典”時(shí)間的中位數(shù)落在__________級.
()如果該校共有名學(xué)生,請你估計(jì)該校平均每天“誦讀經(jīng)典”的時(shí)間不低于分鐘的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師讓學(xué)生尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認(rèn)為這種作法中判斷∠ACB是直角的依據(jù)是( )
A. 勾股定理 B. 直徑所對的圓周角是直角
C. 勾股定理的逆定理 D. 90°的圓周角所對的弦是直徑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com