【題目】八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據(jù)調查結果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.

類別

頻數(shù)(人數(shù))

頻率

小說

0.5

戲劇

4

散文

10

0.25

其他

6

合計

1

根據(jù)圖表提供的信息,解答下列問題:

(1)八年級一班有多少名學生?

(2)請補全頻數(shù)分布表,并求出扇形統(tǒng)計圖中“其他”類所占的百分比;

(3)在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.

【答案】140215%3

【解析】

1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);

2)根據(jù)其他類的頻數(shù)和總人數(shù)求得其百分比即可;

3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.

1喜歡散文的有10人,頻率為025

∴m=10÷025=40;

2)在扇形統(tǒng)計圖中,其他類所占的百分比為 ×100%=15%,

故答案為:15%

3)畫樹狀圖,如圖所示:

所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,

∴P(丙和乙)==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個函數(shù)的圖象關于y軸對稱,我們就稱這個函數(shù)為偶函數(shù).

1)按照上述定義判斷下列函數(shù)中,_____是偶函數(shù).

y3x yx+1 y= yx2

2)若二次函數(shù)yx2+bx4是偶函數(shù),該函數(shù)圖象與x軸交于點A和點B,頂點為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(已知:如圖所示的一張矩形紙片ABCDAD>AB),將紙片折疊一次,使點A與點C重合,再展開,折痕EFAD邊于點E,交BC邊于點F,分別連結AFCE

1)求證:四邊形AFCE是菱形;

2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;

3)在線段AC上是否存在一點P,使得2AE2=AC·AP?若存在,請說明點P的位置,并予以證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,與軸交于點頂點為

求拋物線的解析式;

的度數(shù);

若點是線段上一個動點,過軸交拋物線于點,交軸于點,設點的橫坐標為

①求線段的最大值;

②若是等腰三角形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與直線,交點的橫坐標為,將直線,沿軸向下平移個單位長度,得到直線,直線,與軸交于點,與直線,交于點,點的縱坐標為,直線;與軸交于點

1)求直線的解析式;

2)求的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉一個角度,使點O的對應點D落在弧上.點B的對應點為C.連接BC.則BC的長度是( 。

A.4B.C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店出售一款商品,經(jīng)市場調查反映,該商品的日銷售量y(件)與銷售單價x(元)之間滿足一次函數(shù)關系,關于該商品的銷售單價,日銷售量,日銷售利潤的部分對應數(shù)據(jù)如表:[注:日銷售利潤=日銷售量×(銷售單價﹣成本單價)

銷售單價x(元)

75

78

82

日銷售量y(件)

150

120

80

日銷售利潤w(元)

5250

a

3360

1)根據(jù)以上信息,填空:該產(chǎn)品的成本單價是   元,表中a的值是   ,y關于x的函數(shù)關系式是   ;

2)求該商品日銷售利潤的最大值.

3)由于某種原因,該商品進價降低了m/件(m0),該商店在今后的銷售中,商店規(guī)定該商品的銷售單價不低于68元,日銷售量與銷售單價仍然滿足(1)中的函數(shù)關系,若日銷售最大利潤是6600元,直接寫出m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF90°,延長EFBC的延長線于點G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=5,BC=3,點P、Q分別在邊BC、AC上,PQAB,把△PCQ繞點P旋轉得到△PDE(點C、Q分別與點D、E對應),點D落在線段PQ上,若AD平分∠BAC,則CP的長為_________

查看答案和解析>>

同步練習冊答案